import ecdsa import os # secp256k1, http://www.oid-info.com/get/1.3.132.0.10 _p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F _r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 _b = 0x0000000000000000000000000000000000000000000000000000000000000007 _a = 0x0000000000000000000000000000000000000000000000000000000000000000 _Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 _Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 curve_secp256k1 = ecdsa.ellipticcurve.CurveFp(_p, _a, _b) generator_secp256k1 = ecdsa.ellipticcurve.Point(curve_secp256k1, _Gx, _Gy, _r) oid_secp256k1 = (1, 3, 132, 0, 10) SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1) ec_order = _r curve = curve_secp256k1 generator = generator_secp256k1 def random_secret(): convert_to_int = lambda array: int("".join(array).encode("hex"), 16) # Collect 256 bits of random data from the OS's cryptographically secure # random generator byte_array = os.urandom(32) return convert_to_int(byte_array) def get_point_pubkey(point): key = ('03' if point.y() & 1 else '02') + '%064x' % point.x() return key.decode('hex') def get_point_pubkey_uncompressed(point): key = ('04' + '%064x' % point.x() + '%064x' % point.y()) return key.decode('hex') # Generate a new private key. secret = random_secret() print("Secret: ", secret) # Get the public key point. point = secret * generator print("EC point:", point) print("BTC public key:", get_point_pubkey(point).encode("hex")) # Given the point (x, y) we can create the object using: point1 = ecdsa.ellipticcurve.Point(curve, point.x(), point.y(), ec_order) assert(point1 == point)