mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2025-01-25 15:11:03 +00:00
Made changes to ch08.asciidoc
This commit is contained in:
parent
840ff12591
commit
bcf9e5fbda
@ -59,34 +59,34 @@ The finite and diminishing issuance creates a fixed monetary supply that resists
|
|||||||
****
|
****
|
||||||
The most important and debated consequence of a fixed and diminishing monetary issuance is that the currency will tend to be inherently _deflationary_. Deflation is the phenomenon of appreciation of value due to a mismatch in supply and demand that drives up the value (and exchange rate) of a currency. The opposite of inflation, price deflation means that the money has more purchasing power over time.
|
The most important and debated consequence of a fixed and diminishing monetary issuance is that the currency will tend to be inherently _deflationary_. Deflation is the phenomenon of appreciation of value due to a mismatch in supply and demand that drives up the value (and exchange rate) of a currency. The opposite of inflation, price deflation means that the money has more purchasing power over time.
|
||||||
|
|
||||||
Many economists argue that a deflationary economy is a disaster that should be avoided at all costs. That is because in a period of rapid deflation people will tend to hoard money instead of spending it, hoping that prices will fall. Such a phenomenon unfolded during Japan's "Lost Decade", when a complete collapse of demand pushed the currency into a deflationary spiral.
|
Many economists argue that a deflationary economy is a disaster that should be avoided at all costs. That is because in a period of rapid deflation people will tend to hoard money instead of spending it, hoping that prices will fall. Such a phenomenon unfolded during Japan's "Lost Decade," when a complete collapse of demand pushed the currency into a deflationary spiral.
|
||||||
|
|
||||||
Bitcoin experts argue that deflation is not bad *per se*. Rather, deflation is associated with a collapse in demand because that is the only example of deflation we have to study. In a fiat currency with the possibility of unlimited printing, it is very difficult to enter a deflationary spiral unless there is a complete collapse in demand and an unwillingness to print money. Deflation in bitcoin is not caused by a collapse in demand, but by a predictably constrained supply.
|
Bitcoin experts argue that deflation is not bad per se. Rather, deflation is associated with a collapse in demand because that is the only example of deflation we have to study. In a fiat currency with the possibility of unlimited printing, it is very difficult to enter a deflationary spiral unless there is a complete collapse in demand and an unwillingness to print money. Deflation in bitcoin is not caused by a collapse in demand, but by a predictably constrained supply.
|
||||||
|
|
||||||
In practice, it has become evident that the hoarding instinct caused by a deflationary currency can be overcome by discounting from vendors, until the discount overcomes the hoarding instinct of the buyer. Since the seller is also motivated to hoard, the discount becomes the equilibrium price at which the two hoarding instincts are matched. With discounts of 30% on the bitcoin price, most bitcoin retailers are not experiencing difficulty overcoming the hoarding instinct and generating revenue. It remains to be seen whether the deflationary aspect of the currency is really a problem when it is not driven by rapid economic retraction.
|
In practice, it has become evident that the hoarding instinct caused by a deflationary currency can be overcome by discounting from vendors, until the discount overcomes the hoarding instinct of the buyer. Because the seller is also motivated to hoard, the discount becomes the equilibrium price at which the two hoarding instincts are matched. With discounts of 30% on the bitcoin price, most bitcoin retailers are not experiencing difficulty overcoming the hoarding instinct and generating revenue. It remains to be seen whether the deflationary aspect of the currency is really a problem when it is not driven by rapid economic retraction.
|
||||||
****
|
****
|
||||||
|
|
||||||
=== De-centralized Consensus
|
=== Decentralized Consensus
|
||||||
|
|
||||||
In the previous chapter we looked at the blockchain, the global public ledger (list) of all transactions, which everyone in the bitcoin network accepts as the authoritative record of ownership.
|
In the previous chapter we looked at the blockchain, the global public ledger (list) of all transactions, which everyone in the bitcoin network accepts as the authoritative record of ownership.
|
||||||
|
|
||||||
But how can everyone in the network agree on a single universal "truth" about who owns what, without having to trust anyone? All traditional payment systems depend on a trust model that has a central authority providing a clearinghouse service, basically verifying and clearing all transactions. Bitcoin has no central authority, yet somehow every node has a complete copy of a public ledger that it can trust as the authoritative record. The blockchain is not created by a central authority, but is assembled independently by every node in the network. Somehow, every node in the network, acting on information transmitted across insecure network connections can arrive at the same conclusion and assemble a copy of the same public ledger as everyone else. This chapter examines the process by which the bitcoin network achieves global consensus without central authority.
|
But how can everyone in the network agree on a single universal "truth" about who owns what, without having to trust anyone? All traditional payment systems depend on a trust model that has a central authority providing a clearinghouse service, basically verifying and clearing all transactions. Bitcoin has no central authority, yet somehow every node has a complete copy of a public ledger that it can trust as the authoritative record. The blockchain is not created by a central authority, but is assembled independently by every node in the network. Somehow, every node in the network, acting on information transmitted across insecure network connections, can arrive at the same conclusion and assemble a copy of the same public ledger as everyone else. This chapter examines the process by which the bitcoin network achieves global consensus without central authority.
|
||||||
|
|
||||||
Satoshi Nakamoto's main invention is the decentralized mechanism for _emergent consensus_. Emergent, because consensus is not achieved explicitly -- there is no election or fixed moment when consensus occurs. Instead, consensus is an emergent artifact of the asynchronous interaction of thousands of independent nodes, all following simple rules. All the properties of bitcoin, including currency, transactions, payments, and the security model that does not depend on central authority or trust, derive from this invention.
|
Satoshi Nakamoto's main invention is the decentralized mechanism for _emergent consensus_. Emergent, because consensus is not achieved explicitly—there is no election or fixed moment when consensus occurs. Instead, consensus is an emergent artifact of the asynchronous interaction of thousands of independent nodes, all following simple rules. All the properties of bitcoin, including currency, transactions, payments, and the security model that does not depend on central authority or trust, derive from this invention.
|
||||||
|
|
||||||
Bitcoin's de-centralized consensus emerges from the interplay of four processes that occur independently on nodes across the network:
|
Bitcoin's decentralized consensus emerges from the interplay of four processes that occur independently on nodes across the network:
|
||||||
|
|
||||||
* Independent verification of each transaction, by every full node, based on a comprehensive list of criteria
|
* Independent verification of each transaction, by every full node, based on a comprehensive list of criteria
|
||||||
* Independent aggregation of those transactions into new blocks by mining nodes, coupled with demonstrated computation through a Proof-of-Work algorithm
|
* Independent aggregation of those transactions into new blocks by mining nodes, coupled with demonstrated computation through a Proof-Of-Work algorithm
|
||||||
* Independent verification of the new blocks by every node and assembly into a chain
|
* Independent verification of the new blocks by every node and assembly into a chain
|
||||||
* Independent selection, by every node, of the chain with the most cumulative computation demonstrated through Proof-of-Work
|
* Independent selection, by every node, of the chain with the most cumulative computation demonstrated through Proof-Of-Work
|
||||||
|
|
||||||
In the next few sections we will examine these processes and how they interact to create the emergent property of network-wide consensus that allows any bitcoin node to assemble its own copy of the authoritative, trusted, public, global ledger.
|
In the next few sections we will examine these processes and how they interact to create the emergent property of network-wide consensus that allows any bitcoin node to assemble its own copy of the authoritative, trusted, public, global ledger.
|
||||||
|
|
||||||
[[tx_verification]]
|
[[tx_verification]]
|
||||||
=== Independent Verification of Transactions
|
=== Independent Verification of Transactions
|
||||||
|
|
||||||
In a previous chapter we saw how wallet software creates transactions by collecting UTXO, providing the appropriate unlocking scripts, and then constructing new outputs assigned to a new owner. The resulting transaction is then sent to the neighboring nodes in the bitcoin network so that it may be propagated across the entire bitcoin network.
|
In Chapter 5 we saw how wallet software creates transactions by collecting UTXO, providing the appropriate unlocking scripts, and then constructing new outputs assigned to a new owner. The resulting transaction is then sent to the neighboring nodes in the bitcoin network so that it may be propagated across the entire bitcoin network.
|
||||||
|
|
||||||
However, before forwarding transactions to its neighbors, every bitcoin node that receives a transaction will first verify the transaction. This ensures that only valid transactions are propagated across the network, while invalid transactions are discarded at the first node that encounters them.
|
However, before forwarding transactions to its neighbors, every bitcoin node that receives a transaction will first verify the transaction. This ensures that only valid transactions are propagated across the network, while invalid transactions are discarded at the first node that encounters them.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user