1
0
mirror of https://github.com/bitcoinbook/bitcoinbook synced 2024-11-17 05:29:14 +00:00

added note to replace ECC diagrams with ones showing correct points

This commit is contained in:
Andreas M. Antonopoulos 2014-05-19 08:44:04 -04:00
parent 7fea35e380
commit a6c47ee88c

View File

@ -29,7 +29,7 @@ In most implementations, the private and public keys are stored together as a _k
((("elliptic curve cryptography", "ECC")))
Elliptic Curve Cryptography is a type of asymmetric or public-key cryptography based on the discrete logarithm problem as expressed by addition and multiplication on the points of an elliptic curve.
<< Replace chart below with one showing the K = k * G key generation as a line on the curve >>
[[ecc_addition]]
.Elliptic Curve Cryptography: Visualizing the addition operator on the points of an elliptic curve
@ -56,6 +56,8 @@ where +latexmath:[\(p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1\)]+, a ve
The +mod p+ indicates that this curve is over a finite field of prime order +p+, also written as latexmath:[\(\mathbb{F}_p\)]. The curve looks like a pattern of dots scattered in two dimensions, which makes it difficult to visualize. However, the math is identical as that of an elliptic curve over the real numbers shown above.
<< Replace chart below with one showing the K = k * G key generation as a line on the curve >>
[[ecc-over-F37-math]]
.Elliptic Curve Cryptography: Visualizing the addition operator on the points of an elliptic curve over F(p)
image::images/ecc-over-F37-math.png["Addition operator on points of an elliptic curve over F(p)"]