mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2024-12-23 15:18:11 +00:00
wording improvements
This commit is contained in:
parent
f6e4477367
commit
a69ee9b115
@ -10,7 +10,7 @@ Users can transfer bitcoin over the network to do just about anything that can b
|
||||
|
||||
Unlike traditional currencies, bitcoin are entirely virtual. There are no physical coins or even digital coins per se. The coins are implied in transactions that transfer value from sender to recipient. Users of bitcoin own keys that allow them to prove ownership of bitcoin in the bitcoin network. With these keys they can sign transactions to unlock the value and spend it by transferring it to a new owner. Keys are often stored in a digital wallet on each user’s computer or smartphone. Possession of the key that can sign a transaction is the only prerequisite to spending bitcoin, putting the control entirely in the hands of each user.
|
||||
|
||||
Bitcoin is a distributed, peer-to-peer system. As such there is no "central" server or point of control. Bitcoin are created through a process called "mining," which involves competing to find solutions to a mathematical problem while processing bitcoin transactions. Any participant in the bitcoin network (i.e., anyone using a device running the full bitcoin protocol stack) may operate as a miner, using their computer's processing power to verify and record transactions. Every 10 minutes, on average, someone is able to validate the transactions of the past 10 minutes and is rewarded with brand new bitcoin. Essentially, bitcoin mining decentralizes the currency-issuance and clearing functions of a central bank and replaces the need for any central bank.
|
||||
Bitcoin is a distributed, peer-to-peer system. As such there is no "central" server or point of control. Bitcoin are created through a process called "mining," which involves competing to find solutions to a mathematical problem while processing bitcoin transactions. Any participant in the bitcoin network (i.e., anyone using a device running the full bitcoin protocol stack) may operate as a miner, using their computer's processing power to verify and record transactions. Every 10 minutes, on average, a bitcoin miner is able to validate the transactions of the past 10 minutes and is rewarded with brand new bitcoin. Essentially, bitcoin mining decentralizes the currency-issuance and clearing functions of a central bank and replaces the need for any central bank.
|
||||
|
||||
The bitcoin protocol includes built-in algorithms that regulate the mining function across the network. The difficulty of the processing task that miners must perform is adjusted dynamically so that, on average, someone succeeds every 10 minutes regardless of how many miners (and how much processing) are competing at any moment. The protocol also halves the rate at which new bitcoin are created every 4 years, and limits the total number of bitcoin that will be created to a fixed total just below 21 million coins. The result is that the number of bitcoin in circulation closely follows an easily predictable curve that approaches 21 million by the year 2140. Due to bitcoin's diminishing rate of issuance, over the long term, the bitcoin currency is deflationary. Furthermore, bitcoin cannot be inflated by "printing" new money above and beyond the expected issuance rate.
|
||||
|
||||
@ -33,8 +33,8 @@ In this chapter we'll get started by explaining some of the main concepts and te
|
||||
|
||||
1. Can I trust that the money is authentic and not counterfeit?
|
||||
2. Can I trust that the digital money can only be spent once (known as the “double-spend” problem)?
|
||||
3. Can I be sure that no one else can claim this money belongs to them and not me?
|
||||
|
||||
3. Can I be sure that no one else can claim this money belongs to them and not me?
|
||||
|
||||
Issuers of paper money are constantly battling the counterfeiting problem by using increasingly sophisticated papers and printing technology. Physical money addresses the double-spend issue easily because the same paper note cannot be in two places at once. Of course, conventional money is also often stored and transmitted digitally. In these cases, the counterfeiting and double-spend issues are handled by clearing all electronic transactions through central authorities that have a global view of the currency in circulation. For digital money, which cannot take advantage of esoteric inks or holographic strips, cryptography provides the basis for trusting the legitimacy of a user’s claim to value. Specifically, cryptographic digital signatures enable a user to sign a digital asset or transaction proving the ownership of that asset. With the appropriate architecture, digital signatures also can be used to address the double-spend issue.
|
||||
|
||||
When cryptography started becoming more broadly available and understood in the late 1980s, many researchers began trying to use cryptography to build digital currencies. These early digital currency projects issued digital money, usually backed by a national currency or precious metal such as gold.
|
||||
@ -47,7 +47,7 @@ When cryptography started becoming more broadly available and understood in the
|
||||
|
||||
((("Nakamoto, Satoshi")))((("distributed computing")))((("bitcoin", "history of")))Bitcoin was invented in 2008 with the publication of a paper titled "Bitcoin: A Peer-to-Peer Electronic Cash System,"footnote:["Bitcoin: A Peer-to-Peer Electronic Cash System," Satoshi Nakamoto (https://bitcoin.org/bitcoin.pdf).] written under the alias of Satoshi Nakamoto (see <<satoshi_whitepaper>>). Nakamoto combined several prior inventions such as b-money and HashCash to create a completely decentralized electronic cash system that does not rely on a central authority for currency issuance or settlement and validation of transactions. ((("Proof-of-Work algorithm")))((("decentralized systems", "consensus in")))((("mining and consensus", "Proof-of-Work algorithm")))The key innovation was to use a distributed computation system (called a "Proof-of-Work" algorithm) to conduct a global "election" every 10 minutes, allowing the decentralized network to arrive at _consensus_ about the state of transactions. ((("double-spend problem")))((("spending bitcoin", "double-spend problem")))This elegantly solves the issue of double-spend where a single currency unit can be spent twice. Previously, the double-spend problem was a weakness of digital currency and was addressed by clearing all transactions through a central clearinghouse.
|
||||
|
||||
The bitcoin network started in 2009, based on a reference implementation published by Nakamoto and since revised by many other programmers. The implementation of the Proof-of-Work algorithm (mining) that provides security and resilience for bitcoin has increased in power exponentially, and now exceeds the combined processing power of the world's top supercomputers. Bitcoin's total market value has at times exceeded $20 billion US dollars, depending on the bitcoin-to-dollar exchange rate. The largest transaction processed so far by the network was $150 million US dollars, transmitted instantly and processed without any fees.
|
||||
The bitcoin network started in 2009, based on a reference implementation published by Nakamoto and since revised by many other programmers. The implementation of the Proof-of-Work algorithm (mining) that provides security and resilience for bitcoin has increased in power exponentially, and now exceeds the combined processing power of the world's top supercomputers. Bitcoin's total market value has at times exceeded $35 billion US dollars, depending on the bitcoin-to-dollar exchange rate. The largest transaction processed so far by the network was $150 million US dollars, transmitted instantly and processed without any fees.
|
||||
|
||||
Satoshi Nakamoto withdrew from the public in April 2011, leaving the responsibility of developing the code and network to a thriving group of volunteers. The identity of the person or people behind bitcoin is still unknown. ((("open source licenses")))However, neither Satoshi Nakamoto nor anyone else exerts individual control over the bitcoin system, which operates based on fully transparent mathematical principles, open source code, and consensus among participants. The invention itself is groundbreaking and has already spawned new science in the fields of distributed computing, economics, and econometrics.
|
||||
|
||||
@ -182,7 +182,7 @@ In addition to these various sites and applications, most bitcoin wallets will a
|
||||
==== Sending and Receiving Bitcoin
|
||||
|
||||
|
||||
((("getting started", "sending and receiving bitcoin", id="GSsend01")))((("spending bitcoin", "bitcoin wallet quick start example")))((("spending bitcoin", see="also transactions")))Alice has decided to convert $10 US dollars into bitcoin, so as not to risk too much money on this new technology. She gives Joe $10 in cash, opens her Mycelium wallet application, and selects Receive. This displays a QR code with Alice's first bitcoin address.
|
||||
((("getting started", "sending and receiving bitcoin", id="GSsend01")))((("spending bitcoin", "bitcoin wallet quick start example")))((("spending bitcoin", see="also transactions")))Alice has decided to exchange $10 US dollars for bitcoin, so as not to risk too much money on this new technology. She gives Joe $10 in cash, opens her Mycelium wallet application, and selects Receive. This displays a QR code with Alice's first bitcoin address.
|
||||
|
||||
Joe then selects Send on his smartphone wallet and is presented with a screen containing two inputs:
|
||||
|
||||
@ -208,5 +208,3 @@ Meanwhile, Alice's wallet is constantly "listening" to published transactions on
|
||||
****
|
||||
|
||||
Alice is now the proud owner of 0.10 BTC that she can spend. In the next chapter we will look at her first purchase with bitcoin, and examine the underlying transaction and propagation technologies in more detail.((("", startref="BCbasic01")))((("use cases", "buying coffee", startref="aliceone")))
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user