mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2024-12-23 07:08:13 +00:00
Made changes to ch04.asciidoc
This commit is contained in:
parent
5cebde8557
commit
a63b1931e8
@ -3,29 +3,26 @@
|
||||
|
||||
=== Introduction
|
||||
|
||||
Ownership of bitcoin is established through _digital keys_, _bitcoin addresses_ and _digital signatures_. The digital keys are not actually stored in the network, but are instead created and stored by end-users in a file, or simple database, called a _wallet_. The digital keys in a user's wallet are completely independent of the bitcoin protocol and can be generated and managed by the user's wallet software without reference to the blockchain or access to the Internet. Keys enable many of the interesting properties of bitcoin, including de-centralized trust and control, ownership attestation and the cryptographic-proof security model.
|
||||
Ownership of bitcoin is established through _digital keys_, _bitcoin addresses_, and _digital signatures_. The digital keys are not actually stored in the network, but are instead created and stored by end users in a file, or simple database, called a _wallet_. The digital keys in a user's wallet are completely independent of the bitcoin protocol and can be generated and managed by the user's wallet software without reference to the blockchain or access to the Internet. Keys enable many of the interesting properties of bitcoin, including de-centralized trust and control, ownership attestation, and the cryptographic-proof security model.
|
||||
|
||||
|
||||
HNFUzKACoVNLnyx4PlW7hJg3dpko2UlDwttaxaUPan4afMmK9ZAtHMKB4PqJgYFe8VDIp0x7OpruTFugxA5hBTE=
|
||||
Every bitcoin transaction requires a valid signature to be included in the blockchain, which can only be generated with valid digital keys; therefore, anyone with a copy of those keys has control of the bitcoin in that account. Keys come in pairs consisting of a private (secret) key and a public key. Think of the public key as similar to a bank account number and the private key as similar to the secret PIN, or signature on a check that provides control over the account. These digital keys are very rarely seen by the users of bitcoin. For the most part, they are stored inside the wallet file and managed by the bitcoin wallet software.
|
||||
|
||||
In the payment portion of a bitcoin transaction, the recipient's public key is represented by its digital fingerprint, called a _bitcoin address_, which is used in the same way as the beneficiary name on a check (i.e., "Pay to the order of"). In most cases, a bitcoin address is generated from and corresponds to a public key. However, not all bitcoin addresses represent public keys; they can also represent other beneficiaries such as scripts, as we will see later in this chapter. This way, bitcoin addresses abstract the recipient of funds, making transaction destinations flexible, similar to paper checks: a single payment instrument that can be used to pay into people's accounts, company accounts, pay for bills, or pay to cash. The bitcoin address is the only representation of the keys that users will routinely see, because this is the part they need to share with the world.
|
||||
|
||||
Every bitcoin transaction requires a valid signature to be included in the blockchain, which can only be generated with valid digital keys, therefore anyone with a copy of those keys has control of the bitcoin in that account. Keys come in pairs consisting of a private (secret) and public key. Think of the public key as similar to a bank account number and the private key as similar to the secret PIN number, or signature on a cheque that provides control over the account. These digital keys are very rarely seen by the users of bitcoin. For the most part, they are stored inside the wallet file and managed by the bitcoin wallet software.
|
||||
In this chapter we will introduce wallets, which contain cryptographic keys. We will look at how keys are generated, stored, and managed. We will review the various encoding formats used to represent private and public keys, addresses, and script addresses. Finally, we will look at special uses of keys: to sign messages, to prove ownership, and to create vanity addresses and paper wallets.
|
||||
|
||||
In the payment portion of a bitcoin transaction, the recipient's public key is represented by its digital fingerprint, called a _bitcoin address_, which is used in the same way as the beneficiary name on a cheque (i.e. "Pay to the order of"). In most cases, a bitcoin address is generated from and corresponds to a public key. However, not all bitcoin addresses represent public keys; they can also represent other beneficiaries such as scripts, as we will see later in this chapter. This way, bitcoin addresses abstract the recipient of funds, making transaction destinations flexible, similar to paper cheques: a single payment instrument that can be used to pay into people's accounts, company accounts, pay for bills or pay to cash. The bitcoin address is the only representation of the keys that users will routinely see, as this is the part they need to share with the world.
|
||||
|
||||
In this chapter we will introduce wallets, which contain cryptographic keys. We will look at how keys are generated, stored and managed. We will review the various encoding formats used to represent private and public keys, addresses and script addresses. Finally we will look at special uses of keys: to sign messages, to prove ownership and to create vanity addresses and paper wallets.
|
||||
|
||||
==== Public key cryptography and crypto-currency
|
||||
==== Public Key Cryptography and Crypto-Currency
|
||||
((("public key")))
|
||||
Public key cryptography was invented in the 1970s and is a mathematical foundation for computer and information security.
|
||||
|
||||
Since the invention of public key cryptography, several suitable mathematical functions, such as prime number exponentiation and elliptic curve multiplication, have been discovered. These mathematical functions are practically irreversible, meaning that they are easy to calculate in one direction and infeasible to calculate in the opposite direction. Based on these mathematical functions, cryptography enables the creation of digital secrets and unforgeable digital signatures. Bitcoin uses elliptic curve multiplication as the basis for its public key cryptography.
|
||||
|
||||
In bitcoin, we use public key cryptography to create a key pair that controls access to bitcoins. The key pair consists of a private key and -- derived from it -- a unique public key. The public key is used to receive bitcoins, and the private key is used to sign transactions to spend those bitcoins.
|
||||
In bitcoin, we use public key cryptography to create a key pair that controls access to bitcoins. The key pair consists of a private key and--derived from it--a unique public key. The public key is used to receive bitcoins, and the private key is used to sign transactions to spend those bitcoins.
|
||||
|
||||
There is a mathematical relationship between the public and the private key that allows the private key to be used to generate signatures on messages. This signature can be validated against the public key without revealing the private key.
|
||||
|
||||
When spending bitcoins, the current bitcoin owner presents their public key and a signature (different each time, but created from the same private key; see [XREF-signature]) in a transaction to spend those bitcoins. Through the presentation of the public key and signature everyone in the bitcoin network can verify and accept the transaction as valid, confirming that the person transferring the bitcoins owned them at the time of the transfer.
|
||||
When spending bitcoins, the current bitcoin owner presents her public key and a signature (different each time, but created from the same private key) in a transaction to spend those bitcoins. Through the presentation of the public key and signature, everyone in the bitcoin network can verify and accept the transaction as valid, confirming that the person transferring the bitcoins owned them at the time of the transfer.
|
||||
|
||||
[TIP]
|
||||
====
|
||||
@ -34,25 +31,25 @@ In most wallet implementations, the private and public keys are stored together
|
||||
|
||||
==== Private and Public Keys
|
||||
|
||||
A bitcoin wallet contains a collection of key pairs, each consisting of a private key and a public key. The private key (k) is a number, usually picked at random. From the private key, we use elliptic curve multiplication, a one-way cryptographic function, to generate a public key (K). From the public key (K), we use a one-way cryptographic hash function to generate a bitcoin address (A). In this section we will start with generating the private key, look at the elliptic curve math that is used to turn that into a public key, and finally, generate a bitcoin address from the public key. The relationship between private key, public key and bitcoin address is shown below:
|
||||
A bitcoin wallet contains a collection of key pairs, each consisting of a private key and a public key. The private key (k) is a number, usually picked at random. From the private key, we use elliptic curve multiplication, a one-way cryptographic function, to generate a public key (K). From the public key (K), we use a one-way cryptographic hash function to generate a bitcoin address (A). In this section we will start with generating the private key, look at the elliptic curve math that is used to turn that into a public key, and finally, generate a bitcoin address from the public key. The relationship between private key, public key, and bitcoin address is shown in <<k_to_K_to_A>>.
|
||||
|
||||
[[k_to_K_to_A]]
|
||||
.Private Key, Public Key and Bitcoin Address
|
||||
.Private key, public key, and bitcoin address
|
||||
image::images/msbt_0401.png["privk_to_pubK_to_addressA"]
|
||||
|
||||
[[private_keys]]
|
||||
==== Private Keys
|
||||
|
||||
A +private key+ is simply a number, picked at random. Ownership and control over the private key is the root of user control over all funds associated with the corresponding bitcoin address. The private key is used to create signatures that are required to spend bitcoins by proving ownership of funds used in a transaction. The private key must remain secret at all times, as revealing it to a third party is equivalent to giving them control over the bitcoins secured by that key. The private key must also be backed up and protected from accidental loss, since if lost it cannot be recovered and the funds secured by it are forever lost too.
|
||||
A private key is simply a number, picked at random. Ownership and control over the private key is the root of user control over all funds associated with the corresponding bitcoin address. The private key is used to create signatures that are required to spend bitcoins by proving ownership of funds used in a transaction. The private key must remain secret at all times, because revealing it to third parties is equivalent to giving them control over the bitcoins secured by that key. The private key must also be backed up and protected from accidental loss, because if it's lost it cannot be recovered and the funds secured by it are forever lost, too.
|
||||
|
||||
[TIP]
|
||||
====
|
||||
The bitcoin private key is just a number. You can pick your private keys randomly using just a coin, pencil and paper: Toss a coin 256 times and you have the binary digits of a random private key you can use in a bitcoin wallet. The public key can be then generated from the private key.
|
||||
The bitcoin private key is just a number. You can pick your private keys randomly using just a coin, pencil, and paper: toss a coin 256 times and you have the binary digits of a random private key you can use in a bitcoin wallet. The public key can be then generated from the private key.
|
||||
====
|
||||
|
||||
===== Generating a private key from a random number
|
||||
|
||||
The first and most important step in generating keys is to find a secure source of entropy, or randomness. Creating a bitcoin key is essentially the same as "Pick a number between 1 and 2^256^". The exact method you use to pick that number does not matter as long as it is not predictable or repeatable. Bitcoin software uses the underlying operating system's random number generators to produce 256 bits of entropy (randomness). Usually, the OS random number generator is initialized by a human source of randomness, which is why you may be asked to wiggle your mouse around for a few seconds. For the truly paranoid, nothing beats dice, pencil and paper.
|
||||
The first and most important step in generating keys is to find a secure source of entropy, or randomness. Creating a bitcoin key is essentially the same as "Pick a number between 1 and 2^256^." The exact method you use to pick that number does not matter as long as it is not predictable or repeatable. Bitcoin software uses the underlying operating system's random number generators to produce 256 bits of entropy (randomness). Usually, the OS random number generator is initialized by a human source of randomness, which is why you may be asked to wiggle your mouse around for a few seconds. For the truly paranoid, nothing beats dice, pencil, and paper.
|
||||
|
||||
More accurately, the private key can be any number between +1+ and +n - 1+, where n is a constant (n = 1.158 * 10^77^, slightly less than 2^256^) defined as the order of the elliptic curve used in bitcoin (see <<elliptic_curve>>). To create such a key, we randomly pick a 256-bit number and check that it is less than +n - 1+. In programming terms, this is usually achieved by feeding a larger string of random bits, collected from a cryptographically-secure source of randomness, into the SHA-256 hash algorithm which will conveniently produce a 256-bit number. If the result is less than +n - 1+, we have a suitable private key. Otherwise, we simply try again with another random number.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user