mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2024-11-22 16:18:11 +00:00
Indexing edits complete
This commit is contained in:
parent
18569273fe
commit
9d7b86e455
@ -253,7 +253,7 @@ Bitcoin address : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
|
||||
----
|
||||
====
|
||||
|
||||
Litecoin((("Litecoin"))) version:
|
||||
Litecoin version:
|
||||
|
||||
====
|
||||
----
|
||||
|
@ -86,7 +86,7 @@ Each of these stories is based on real people and real industries that are curre
|
||||
|
||||
The three main forms of bitcoin clients are:
|
||||
|
||||
Full client:: ((("full clients")))((("full nodes")))A full client, or "full node," is a client that stores the entire history of bitcoin transactions (every transaction by every user, ever), manages the users' wallets, and can initiate transactions directly on the bitcoin network. This is similar to a standalone email server, in that it handles all aspects of the protocol without relying on any other servers or third-party services.
|
||||
Full client:: ((("full nodes")))A full client, or "full node," is a client that stores the entire history of bitcoin transactions (every transaction by every user, ever), manages the users' wallets, and can initiate transactions directly on the bitcoin network. This is similar to a standalone email server, in that it handles all aspects of the protocol without relying on any other servers or third-party services.
|
||||
|
||||
Lightweight client:: ((("lightweight client")))A lightweight client stores the user's wallet but relies on third-party–owned servers for access to the bitcoin transactions and network. The light client does not store a full copy of all transactions and therefore must trust the third-party servers for transaction validation. This is similar to a standalone email client that connects to a mail server for access to a mailbox, in that it relies on a third party for interactions with the network.
|
||||
|
||||
@ -140,7 +140,7 @@ Alice is now ready to start using her new bitcoin wallet.
|
||||
((("bitcoin","acquiring")))((("currency markets")))It is not possible to buy bitcoins at a bank or foreign exchange kiosks at this time. As of 2014, it is still quite difficult to acquire bitcoins in most countries. There are a number of specialized currency exchanges where you can buy and sell bitcoin in exchange for a local currency. These operate as web-based currency markets and include:
|
||||
|
||||
http://bitstamp.net[Bitstamp]:: A European currency market that supports several currencies including euros (EUR) and US dollars (USD) via wire transfer.((("Bitstamp currency market")))
|
||||
http://www.coinbase.com[Coinbase]:: A US-based bitcoin wallet and platform where merchants and consumers can transact in bitcoin. Coinbase makes it easy to buy and sell bitcoin, allowing users to connect to US checking accounts via the ACH system.((("Coinbase currency market")))
|
||||
http://www.coinbase.com[Coinbase]:: A US-based bitcoin wallet and platform where merchants and consumers can transact in bitcoin. Coinbase makes it easy to buy and sell bitcoin, allowing users to connect to US checking accounts via the ACH system.((("Coinbase.com")))
|
||||
|
||||
Cryptocurrency exchanges such as these operate at the intersection of national currencies and cryptocurrencies. As such, they are subject to national and international regulations, and are often specific to a single country or economic area and specialize in the national currencies of that area. Your choice of currency exchange will be specific to the national currency you use and limited to the exchanges that operate within the legal jurisdiction of your country. Similar to opening a bank account, it takes several days or weeks to set up the necessary accounts with these services because they require various forms of identification to comply with((("AML (Anti-Money Laundering) banking regulations")))((("banking regulations and bitcoin")))((("KYC (Know Your Customer) banking regulations"))) KYC (know your customer) and AML (anti-money laundering) banking regulations. Once you have an account on a bitcoin exchange, you can then buy or sell bitcoins quickly just as you could with foreign currency with a brokerage account.
|
||||
|
||||
|
@ -13,7 +13,7 @@ image::images/msbt_0301.png["bitcoin choose client"]
|
||||
|
||||
==== Running Bitcoin Core for the First Time
|
||||
|
||||
((("Bitcoin Core client","running")))If you download an installable package, such as an .exe, .dmg, or PPA, you can install it the same way as any application on your operating system. ((("Windows, launching Bitcoin Core on")))For Windows, run the .exe and follow the step-by-step instructions. ((("Mac OS, launching Bitcoin Core")))For Mac OS, launch the .dmg and drag the Bitcoin-QT icon into your _Applications_ folder. ((("Ubuntu Linux, launching Bitcoin Core")))For Ubuntu, double-click the PPA in your File Explorer and it will open the package manager to install the package. Once you have completed installation you should have a new application called Bitcoin-Qt in your application list. Double-click the icon to start the bitcoin client.
|
||||
((("Bitcoin Core client","running")))If you download an installable package, such as an .exe, .dmg, or PPA, you can install it the same way as any application on your operating system. For Windows, run the .exe and follow the step-by-step instructions. For Mac OS, launch the .dmg and drag the Bitcoin-QT icon into your _Applications_ folder. For Ubuntu, double-click the PPA in your File Explorer and it will open the package manager to install the package. Once you have completed installation you should have a new application called Bitcoin-Qt in your application list. Double-click the icon to start the bitcoin client.
|
||||
|
||||
The first time you run Bitcoin Core it will start downloading the block chain, a process that might take several days (see <<bitcoin-qt-firstload>>). Leave it running in the background until it displays "Synchronized" and no longer shows "out of sync" next to the balance.
|
||||
|
||||
@ -29,7 +29,7 @@ image::images/msbt_0302.png["bitcoin-qt first run"]
|
||||
|
||||
==== Compiling Bitcoin Core from the Source Code
|
||||
|
||||
((("Bitcoin Core client","compiling from source code", id="ix_ch03-asciidoc3", range="startofrange")))((("bitcoind client", id="ix_ch03-asciidoc4", range="startofrange")))For developers, there is also the option to download the full source code as a ZIP archive or by cloning the authoritative source repository from GitHub. ((("Bitcoin Core client","source code, downloading")))((("GitHub, downloading Bitcoin Core from"))) On the https://github.com/bitcoin/bitcoin[GitHub bitcoin page], select Download ZIP from the sidebar. Alternatively, use the git command line to create a local copy of the source code on your system. In the following example, we are cloning the source code from a Unix-like command line, in Linux or Mac OS:
|
||||
((("Bitcoin Core client","compiling from source code", id="ix_ch03-asciidoc3", range="startofrange")))((("bitcoind client", see="Bitcoin Core client")))For developers, there is also the option to download the full source code as a ZIP archive or by cloning the authoritative source repository from GitHub. ((("Bitcoin Core client","source code, downloading")))((("GitHub, downloading Bitcoin Core from"))) On the https://github.com/bitcoin/bitcoin[GitHub bitcoin page], select Download ZIP from the sidebar. Alternatively, use the git command line to create a local copy of the source code on your system. In the following example, we are cloning the source code from a Unix-like command line, in Linux or Mac OS:
|
||||
|
||||
----
|
||||
$ git clone https://github.com/bitcoin/bitcoin.git
|
||||
@ -85,7 +85,7 @@ $
|
||||
----
|
||||
|
||||
|
||||
((("Bitcoin Core client","documentation")))The source code includes documentation, which can be found in a number of files. Review the main documentation located in _README.md_ in the bitcoin directory by typing +more README.md+ at the prompt and using the space bar to progress to the next page. In this chapter, we will build the command-line bitcoin client, also known as((("bitcoind client","compiling"))) +bitcoind+ on Linux. Review the instructions for compiling the bitcoind command-line client on your platform by typing +more doc/build-unix.md+. Alternative instructions for Mac OS X and Windows can be found in the _doc_ directory, as _build-osx.md_ or _build-msw.md_, respectively.
|
||||
((("Bitcoin Core client","documentation")))The source code includes documentation, which can be found in a number of files. Review the main documentation located in _README.md_ in the bitcoin directory by typing +more README.md+ at the prompt and using the space bar to progress to the next page. In this chapter, we will build the command-line bitcoin client, also known as +bitcoind+ on Linux. Review the instructions for compiling the bitcoind command-line client on your platform by typing +more doc/build-unix.md+. Alternative instructions for Mac OS X and Windows can be found in the _doc_ directory, as _build-osx.md_ or _build-msw.md_, respectively.
|
||||
|
||||
Carefully review the build prerequisites, which are in the first part of the build documentation. These are libraries that must be present on your system before you can begin to compile bitcoin. If these prerequisites are missing, the build process will fail with an error. If this happens because you missed a prerequisite, you can install it and then resume the build process from where you left off. Assuming the prerequisites are installed, you start the build process by generating a set of build scripts using the _autogen.sh_ script.
|
||||
|
||||
@ -256,7 +256,7 @@ While you're editing this configuration file, you might want to set a few other
|
||||
|
||||
Now, run the Bitcoin Core client. The first time you run it, it will rebuild the bitcoin block chain by downloading all the blocks. This is a multigigabyte file and will take an average of two days to download in full. You can shorten the((("blockchains","downloading with bittorrent clients"))) block chain initialization time by downloading a partial copy of the block chain using a BitTorrent client from http://bit.ly/1qkLNyh[SourceForge].
|
||||
|
||||
Run bitcoind in the background with the option +-daemon+:(((range="endofrange", startref="ix_ch03-asciidoc4")))(((range="endofrange", startref="ix_ch03-asciidoc3")))
|
||||
Run bitcoind in the background with the option +-daemon+:(((range="endofrange", startref="ix_ch03-asciidoc3")))
|
||||
|
||||
----
|
||||
$ bitcoind -daemon
|
||||
@ -282,7 +282,7 @@ Opened LevelDB successfully
|
||||
|
||||
=== Using Bitcoin Core's JSON-RPC API from the Command Line
|
||||
|
||||
((("Bitcoin Core client","JSON-RPC API for", id="ix_ch03-asciidoc5", range="startofrange")))((("Bitcoin Core client","using from command line", id="ix_ch03-asciidoc6", range="startofrange")))((("bitcoin-cli command line helper", id="ix_ch03-asciidoc7", range="startofrange")))((("bitcoind client","using", id="ix_ch03-asciidoc8", range="startofrange")))The Bitcoin Core client implements a JSON-RPC interface that can also be accessed using the command-line helper +bitcoin-cli+. The command line allows us to experiment interactively with the capabilities that are also available programmatically via the API. To start, invoke the +help+ command to see a list of the available bitcoin RPC commands:
|
||||
((("Bitcoin Core client","JSON-RPC API for", id="ix_ch03-asciidoc5", range="startofrange")))((("Bitcoin Core client","using from command line", id="ix_ch03-asciidoc6", range="startofrange")))((("bitcoin-cli command line helper", id="ix_ch03-asciidoc7", range="startofrange")))The Bitcoin Core client implements a JSON-RPC interface that can also be accessed using the command-line helper +bitcoin-cli+. The command line allows us to experiment interactively with the capabilities that are also available programmatically via the API. To start, invoke the +help+ command to see a list of the available bitcoin RPC commands:
|
||||
|
||||
[[bitcoind_commands]]
|
||||
|
||||
@ -838,7 +838,7 @@ The +getblock+, +getblockhash+, and +gettransaction+ commands can be used to exp
|
||||
|
||||
Commands: +listunspent+, +gettxout+, +createrawtransaction+, +decoderawtransaction+, +signrawtransaction+, +sendrawtransaction+
|
||||
|
||||
((("bitcoin-cli command line helper","createrawtransaction command", id="ix_ch03-asciidoc31", range="startofrange")))((("bitcoin-cli command line helper","decoderawtransaction command", id="ix_ch03-asciidoc32", range="startofrange")))((("bitcoin-cli command line helper","gettxout command", id="ix_ch03-asciidoc33", range="startofrange")))((("bitcoin-cli command line helper","listunspent command", id="ix_ch03-asciidoc34", range="startofrange")))((("bitcoin-cli command line helper","sendrawtransaction command", id="ix_ch03-asciidoc35", range="startofrange")))((("bitcoin-cli command line helper","signrawtransaction command", id="ix_ch03-asciidoc36", range="startofrange")))((("createrawtransaction command (bitcoin-cli)", id="ix_ch03-asciidoc37", range="startofrange")))((("decoderawtransaction command (bitcoin-cli)", id="ix_ch03-asciidoc38", range="startofrange")))((("gettxout command (bitcoin-cli)", id="ix_ch03-asciidoc39", range="startofrange")))((("listunspent command (bitcoin-cli)", id="ix_ch03-asciidoc40", range="startofrange")))((("sendrawtransaction command (bitcoin-cli)", id="ix_ch03-asciidoc41", range="startofrange")))((("signrawtransaction command (bitcoin-cli)", id="ix_ch03-asciidoc42", range="startofrange")))((("transactions","creating from the command line", id="ix_ch03-asciidoc43", range="startofrange")))((("transactions","signing from the command line", id="ix_ch03-asciidoc44", range="startofrange")))((("transactions","submitting from the command line", id="ix_ch03-asciidoc45", range="startofrange")))((("unspent outputs", id="ix_ch03-asciidoc46", range="startofrange")))Bitcoin's transactions are based on the concept of spending "outputs," which are the result of previous transactions, to create a transaction chain that transfers ownership from address to address. Our wallet has now received a transaction that assigned one such output to our address. Once this is confirmed, we can spend that output.
|
||||
((("bitcoin-cli command line helper","createrawtransaction command", id="ix_ch03-asciidoc31", range="startofrange")))((("bitcoin-cli command line helper","decoderawtransaction command", id="ix_ch03-asciidoc32", range="startofrange")))((("bitcoin-cli command line helper","gettxout command", id="ix_ch03-asciidoc33", range="startofrange")))((("bitcoin-cli command line helper","listunspent command", id="ix_ch03-asciidoc34", range="startofrange")))((("bitcoin-cli command line helper","sendrawtransaction command", id="ix_ch03-asciidoc35", range="startofrange")))((("bitcoin-cli command line helper","signrawtransaction command", id="ix_ch03-asciidoc36", range="startofrange")))((("createrawtransaction command (bitcoin-cli)", id="ix_ch03-asciidoc37", range="startofrange")))((("decoderawtransaction command (bitcoin-cli)", id="ix_ch03-asciidoc38", range="startofrange")))((("gettxout command (bitcoin-cli)", id="ix_ch03-asciidoc39", range="startofrange")))((("listunspent command (bitcoin-cli)", id="ix_ch03-asciidoc40", range="startofrange")))((("sendrawtransaction command (bitcoin-cli)", id="ix_ch03-asciidoc41", range="startofrange")))((("signrawtransaction command (bitcoin-cli)", id="ix_ch03-asciidoc42", range="startofrange")))((("transactions","creating from the command line", id="ix_ch03-asciidoc43", range="startofrange")))((("transactions","signing from the command line", id="ix_ch03-asciidoc44", range="startofrange")))((("transactions","submitting from the command line", id="ix_ch03-asciidoc45", range="startofrange")))((("unspent transaction output (UTXO)", id="ix_ch03-asciidoc46", range="startofrange")))Bitcoin's transactions are based on the concept of spending "outputs," which are the result of previous transactions, to create a transaction chain that transfers ownership from address to address. Our wallet has now received a transaction that assigned one such output to our address. Once this is confirmed, we can spend that output.
|
||||
|
||||
First, we use the +listunspent+ command to show all the unspent _confirmed_ outputs in our wallet:
|
||||
|
||||
@ -1125,7 +1125,7 @@ $ bitcoin-cli gettransaction ae74538baa914f3799081ba78429d5d84f36a0127438e9f7<?p
|
||||
}
|
||||
----
|
||||
|
||||
As before, we can also examine this in more detail using the +getrawtransaction+ and +decodetransaction+ commands. These commands will return the exact same hex string that we produced and decoded previously just before we sent it on the network.(((range="endofrange", startref="ix_ch03-asciidoc46")))(((range="endofrange", startref="ix_ch03-asciidoc45")))(((range="endofrange", startref="ix_ch03-asciidoc44")))(((range="endofrange", startref="ix_ch03-asciidoc43")))(((range="endofrange", startref="ix_ch03-asciidoc42")))(((range="endofrange", startref="ix_ch03-asciidoc41")))(((range="endofrange", startref="ix_ch03-asciidoc40")))(((range="endofrange", startref="ix_ch03-asciidoc39")))(((range="endofrange", startref="ix_ch03-asciidoc38")))(((range="endofrange", startref="ix_ch03-asciidoc37")))(((range="endofrange", startref="ix_ch03-asciidoc36")))(((range="endofrange", startref="ix_ch03-asciidoc35")))(((range="endofrange", startref="ix_ch03-asciidoc34")))(((range="endofrange", startref="ix_ch03-asciidoc33")))(((range="endofrange", startref="ix_ch03-asciidoc32")))(((range="endofrange", startref="ix_ch03-asciidoc31")))(((range="endofrange", startref="ix_ch03-asciidoc8")))(((range="endofrange", startref="ix_ch03-asciidoc7")))(((range="endofrange", startref="ix_ch03-asciidoc6")))(((range="endofrange", startref="ix_ch03-asciidoc5")))(((range="endofrange", startref="ix_ch03-asciidoc2")))(((range="endofrange", startref="ix_ch03-asciidoc1")))
|
||||
As before, we can also examine this in more detail using the +getrawtransaction+ and +decodetransaction+ commands. These commands will return the exact same hex string that we produced and decoded previously just before we sent it on the network.(((range="endofrange", startref="ix_ch03-asciidoc46")))(((range="endofrange", startref="ix_ch03-asciidoc45")))(((range="endofrange", startref="ix_ch03-asciidoc44")))(((range="endofrange", startref="ix_ch03-asciidoc43")))(((range="endofrange", startref="ix_ch03-asciidoc42")))(((range="endofrange", startref="ix_ch03-asciidoc41")))(((range="endofrange", startref="ix_ch03-asciidoc40")))(((range="endofrange", startref="ix_ch03-asciidoc39")))(((range="endofrange", startref="ix_ch03-asciidoc38")))(((range="endofrange", startref="ix_ch03-asciidoc37")))(((range="endofrange", startref="ix_ch03-asciidoc36")))(((range="endofrange", startref="ix_ch03-asciidoc35")))(((range="endofrange", startref="ix_ch03-asciidoc34")))(((range="endofrange", startref="ix_ch03-asciidoc33")))(((range="endofrange", startref="ix_ch03-asciidoc32")))(((range="endofrange", startref="ix_ch03-asciidoc31")))(((range="endofrange", startref="ix_ch03-asciidoc7")))(((range="endofrange", startref="ix_ch03-asciidoc6")))(((range="endofrange", startref="ix_ch03-asciidoc5")))(((range="endofrange", startref="ix_ch03-asciidoc2")))(((range="endofrange", startref="ix_ch03-asciidoc1")))
|
||||
|
||||
[[alt_libraries]]
|
||||
=== Alternative Clients, Libraries, and Toolkits
|
||||
|
@ -213,7 +213,7 @@ image::images/msbt_0404.png["ecc_illustrated"]
|
||||
|
||||
[TIP]
|
||||
====
|
||||
Most bitcoin implementations use the((("OpenSSL cryptographic library"))) http://bit.ly/1ql7bn8[OpenSSL cryptographic library] to do the elliptic curve math. For example, to derive the public key, the function((("EC_POINT_mul() function (OpenSSL)"))) +EC_POINT_mul()+ is used.(((range="endofrange", startref="ix_ch04-asciidoc7")))(((range="endofrange", startref="ix_ch04-asciidoc6")))(((range="endofrange", startref="ix_ch04-asciidoc0")))
|
||||
Most bitcoin implementations use the((("OpenSSL cryptographic library"))) http://bit.ly/1ql7bn8[OpenSSL cryptographic library] to do the elliptic curve math. For example, to derive the public key, the function +EC_POINT_mul()+ is used.(((range="endofrange", startref="ix_ch04-asciidoc7")))(((range="endofrange", startref="ix_ch04-asciidoc6")))(((range="endofrange", startref="ix_ch04-asciidoc0")))
|
||||
====
|
||||
|
||||
=== Bitcoin Addresses
|
||||
@ -361,7 +361,7 @@ All of these representations are different ways of showing the same number, the
|
||||
|
||||
===== Decode from Base58Check to hex
|
||||
|
||||
((("Base58Check encoding","decoding to hex")))((("sx tools","decoding Base58Check to/from hex")))The sx tools package (See <<sx_tools>>) makes it easy to write shell scripts and command-line((("pipes"))) "pipes" that manipulate bitcoin keys, addresses, and transactions. You can use sx tools to decode the Base58Check format on the command line.
|
||||
((("Base58Check encoding","decoding to hex")))((("sx tools","decoding Base58Check to/from hex")))The sx tools package (See <<sx_tools>>) makes it easy to write shell scripts and command-line "pipes" that manipulate bitcoin keys, addresses, and transactions. You can use sx tools to decode the Base58Check format on the command line.
|
||||
|
||||
We use the((("base58check-decode command (sx tools)"))) +base58check-decode+ command:
|
||||
----
|
||||
@ -617,7 +617,7 @@ fce540af281bf7cdeade0dd2c1c795bd02f1e4049e205a0158906c343
|
||||
[[hd_wallets]]
|
||||
==== Hierarchical Deterministic Wallets (BIP0032/BIP0044)
|
||||
|
||||
((("deterministic wallets","hierarchical", id="ix_ch04-asciidoc24", range="startofrange")))((("hierarchical deterministic wallets (HD wallets)", id="ix_ch04-asciidoc25", range="startofrange")))Deterministic wallets were developed to make it easy to derive many keys from a single "seed." The most advanced form of deterministic wallets is the _hierarchical deterministic wallet_ or _HD wallet_ defined by the BIP0032 standard. Hierarchical deterministic wallets contain keys derived in a tree structure, such that a parent key can derive a sequence of children keys, each of which can derive a sequence of grandchildren keys, and so on, to an infinite depth. This tree structure is illustrated in <<Type2_wallet>>.((("hierarchical deterministic wallets (HD wallets)","tree structure for")))
|
||||
((("deterministic wallets","hierarchical", id="ix_ch04-asciidoc24", range="startofrange")))((("hierarchical deterministic wallets (HD wallets)", id="ix_ch04-asciidoc25", range="startofrange")))((("BIP0032", id="ix_ch04-asciidoc25a", range="startofrange")))((("BIP0044", id="ix_ch04-asciidoc25b", range="startofrange")))Deterministic wallets were developed to make it easy to derive many keys from a single "seed." The most advanced form of deterministic wallets is the _hierarchical deterministic wallet_ or _HD wallet_ defined by the BIP0032 standard. Hierarchical deterministic wallets contain keys derived in a tree structure, such that a parent key can derive a sequence of children keys, each of which can derive a sequence of grandchildren keys, and so on, to an infinite depth. This tree structure is illustrated in <<Type2_wallet>>.((("hierarchical deterministic wallets (HD wallets)","tree structure for")))
|
||||
|
||||
[[Type2_wallet]]
|
||||
.Type-2 hierarchical deterministic wallet: a tree of keys generated from a seed
|
||||
@ -768,7 +768,7 @@ The "ancestry" of a key is read from right to left, until you reach the master k
|
||||
|
||||
Two Bitcoin Improvement Proposals (BIPs) offer a solution to this complexity, by creating some proposed standards for the structure of HD wallet trees. BIP0043 proposes the use of the first hardened child index as a special identifier that signifies the "purpose" of the tree structure. Based on BIP0043, an HD wallet should use only one level-1 branch of the tree, with the index number identifying the structure and namespace of the rest of the tree by defining its purpose. For example, an HD wallet using only branch m/i'/ is intended to signify a specific purpose and that purpose is identified by index number "i".
|
||||
|
||||
((("BIP0044")))((("multiaccount structure")))Extending that specification, BIP0044 proposes a multiaccount structure as "purpose" number +44'+ under BIP0043. All HD wallets following the BIP0044 structure are identified by the fact that they only used one branch of the tree: m/44'/.
|
||||
((("multiaccount structure")))Extending that specification, BIP0044 proposes a multiaccount structure as "purpose" number +44'+ under BIP0043. All HD wallets following the BIP0044 structure are identified by the fact that they only used one branch of the tree: m/44'/.
|
||||
|
||||
BIP0044 specifies the structure as consisting of five predefined tree levels:
|
||||
|
||||
@ -792,7 +792,7 @@ BIP0044 specifies the structure as consisting of five predefined tree levels:
|
||||
|
||||
===== Experimenting with HD wallets using sx tools
|
||||
|
||||
((("hierarchical deterministic wallets (HD wallets)","sx tools and")))((("sx tools","HD wallets and")))Using the command-line tool +sx+, introduced in <<ch03_bitcoin_client>>, you can experiment with generating and extending BIP0032 deterministic keys, as well as displaying them in different formats: (((range="endofrange", startref="ix_ch04-asciidoc25")))(((range="endofrange", startref="ix_ch04-asciidoc24")))(((range="endofrange", startref="ix_ch04-asciidoc23")))
|
||||
((("hierarchical deterministic wallets (HD wallets)","sx tools and")))((("sx tools","HD wallets and")))Using the command-line tool +sx+, introduced in <<ch03_bitcoin_client>>, you can experiment with generating and extending BIP0032 deterministic keys, as well as displaying them in different formats: (((range="endofrange", startref="ix_ch04-asciidoc25b")))(((range="endofrange", startref="ix_ch04-asciidoc25a")))(((range="endofrange", startref="ix_ch04-asciidoc25")))(((range="endofrange", startref="ix_ch04-asciidoc24")))(((range="endofrange", startref="ix_ch04-asciidoc23")))
|
||||
|
||||
====
|
||||
[source, bash]
|
||||
@ -823,7 +823,7 @@ In the following sections we will look at advanced forms of keys and addresses,
|
||||
|
||||
BIP0038 proposes a common standard for encrypting private keys with a passphrase and encoding them with Base58Check so that they can be stored securely on backup media, transported securely between wallets, or kept in any other conditions where the key might be exposed. The standard for encryption uses the((("Advanced Encryption Standard (AES)"))) Advanced Encryption Standard (AES), a standard established by the National Institute of Standards and Technology (NIST) and used broadly in data encryption implementations for commercial and military applications.
|
||||
|
||||
((("Wallet Import Format (WIF)","for BIP0038 encryption")))A BIP0038 encryption scheme takes as input a bitcoin private key, usually encoded in the Wallet Import Format (WIF), as a Base58Check string with a prefix of "5". Additionally, the BIP0038 encryption scheme takes a passphrase—a long password—usually composed of several words or a complex string of alphanumeric characters. The result of the BIP0038 encryption scheme is a Base58Check-encoded encrypted private key that begins with the prefix +6P+. If you see a key that starts with +6P+, that means it is encrypted and requires a passphrase in order to convert (decrypt) it back into a WIF-formatted private key (prefix +5+) that can be used in any wallet. Many wallet applications now recognize BIP0038-encrypted private keys and will prompt the user for a passphrase to decrypt and import the key. Third-party applications, such as the incredibly useful browser-based http://bitaddress.org[Bit Address] (Wallet Details tab), can be used to decrypt BIP0038 keys.
|
||||
((("Wallet Import Format (WIF)","from BIP0038 encryption")))A BIP0038 encryption scheme takes as input a bitcoin private key, usually encoded in the Wallet Import Format (WIF), as a Base58Check string with a prefix of "5". Additionally, the BIP0038 encryption scheme takes a passphrase—a long password—usually composed of several words or a complex string of alphanumeric characters. The result of the BIP0038 encryption scheme is a Base58Check-encoded encrypted private key that begins with the prefix +6P+. If you see a key that starts with +6P+, that means it is encrypted and requires a passphrase in order to convert (decrypt) it back into a WIF-formatted private key (prefix +5+) that can be used in any wallet. Many wallet applications now recognize BIP0038-encrypted private keys and will prompt the user for a passphrase to decrypt and import the key. Third-party applications, such as the incredibly useful browser-based http://bitaddress.org[Bit Address] (Wallet Details tab), can be used to decrypt BIP0038 keys.
|
||||
|
||||
((("paper wallets","BIP0038 encryption and")))The most common use case for BIP0038 encrypted keys is for paper wallets that can be used to back up private keys on a piece of paper. As long as the user selects a strong passphrase, a paper wallet with BIP0038 encrypted private keys is incredibly secure and a great way to create offline bitcoin storage (also known as "cold storage").
|
||||
|
||||
@ -841,7 +841,7 @@ Test the encrypted keys in <<table_4-10>> using((("bitaddress.org"))) bitaddress
|
||||
[[p2sh_addresses]]
|
||||
==== Pay-to-Script Hash (P2SH) and Multi-Sig Addresses
|
||||
|
||||
((("addresses, bitcoin","multi-sig addresses")))((("addresses, bitcoin","Pay-to-Script Hash (P2SH)")))((("multi-sig addresses")))((("Pay-to-Script Hash (P2SH)")))As we know, traditional bitcoin addresses begin with the number “1” and are derived from the public key, which is derived from the private key. Although anyone can send bitcoin to a “1” address, that bitcoin can only be spent by presenting the corresponding private key signature and public key hash.
|
||||
((("addresses, bitcoin","multi-signature addresses")))((("addresses, bitcoin","Pay-to-Script Hash (P2SH)")))((("multi-signature addresses")))((("Pay-to-Script Hash (P2SH)")))As we know, traditional bitcoin addresses begin with the number “1” and are derived from the public key, which is derived from the private key. Although anyone can send bitcoin to a “1” address, that bitcoin can only be spent by presenting the corresponding private key signature and public key hash.
|
||||
|
||||
Bitcoin addresses that begin with the number “3” are pay-to-script hash (P2SH) addresses, sometimes erroneously called multi-signature or multi-sig addresses. They designate the beneficiary of a bitcoin transaction as the hash of a script, instead of the owner of a public key. The feature was introduced in January 2012 with Bitcoin Improvement Proposal 16, or BIP0016 (see <<bip0016>>), and is being widely adopted because it provides the opportunity to add functionality to the address itself. Unlike transactions that "send" funds to traditional “1” bitcoin addresses, also known as((("BIP0016")))((("Pay-to-Public-Key-Hash (P2PKH)"))) pay-to-public-key-hash (P2PKH), funds sent to “3” addresses require something more than the presentation of one public key hash and one private key signature as proof of ownership. The requirements are designated at the time the address is created, within the script, and all inputs to this address will be encumbered with the same requirements.
|
||||
|
||||
|
@ -69,7 +69,7 @@ A transaction contains a number of fields, as shown in <<tx_data_structure>>.
|
||||
[[tx_inputs_outputs]]
|
||||
=== Transaction Outputs and Inputs
|
||||
|
||||
((("transactions","unspent transaction output")))((("unspent transaction output (UTXO)")))The fundamental building block of a bitcoin transaction is an _unspent transaction output_, or UTXO. UTXO are indivisible chunks of bitcoin currency locked to a specific owner, recorded on the blockchain, and recognized as currency units by the entire network. The bitcoin network tracks all available (unspent) UTXO currently numbering in the millions. Whenever a user receives bitcoin, that amount is recorded within the block chain as a UTXO. Thus, a user's bitcoin might be scattered as UTXO amongst hundreds of transactions and hundreds of blocks. In effect, there is no such thing as a stored balance of a bitcoin address or account; there are only scattered UTXO, locked to specific owners. The concept of a user's bitcoin balance is a derived construct created by the wallet application. The wallet calculates the user's balance by scanning the block chain and aggregating all UTXO belonging to that user.
|
||||
((("transactions","unspent transaction output (UTXO)")))((("unspent transaction output (UTXO)")))The fundamental building block of a bitcoin transaction is an _unspent transaction output_, or UTXO. UTXO are indivisible chunks of bitcoin currency locked to a specific owner, recorded on the blockchain, and recognized as currency units by the entire network. The bitcoin network tracks all available (unspent) UTXO currently numbering in the millions. Whenever a user receives bitcoin, that amount is recorded within the block chain as a UTXO. Thus, a user's bitcoin might be scattered as UTXO amongst hundreds of transactions and hundreds of blocks. In effect, there is no such thing as a stored balance of a bitcoin address or account; there are only scattered UTXO, locked to specific owners. The concept of a user's bitcoin balance is a derived construct created by the wallet application. The wallet calculates the user's balance by scanning the block chain and aggregating all UTXO belonging to that user.
|
||||
|
||||
[TIP]
|
||||
====
|
||||
@ -553,7 +553,7 @@ If the redeem script hash matches, the unlocking script is executed on its own,
|
||||
|
||||
===== Pay-to-script-hash addresses
|
||||
|
||||
((("addresses, bitcoin","encrypting with P2SH")))((("Pay-to-script-hash (P2SH)","addresses")))Another important part of the P2SH feature is the ability to encode a script hash as an address, as defined in BIP0013. P2SH addresses are Base58Check encodings of the 20-byte hash of a script, just like bitcoin addresses are Base58Check encodings of the 20-byte hash of a public key. P2SH addresses use the version prefix "5", which results in Base58Check-encoded addresses that start with a "3". For example, Mohammed's complex script, hashed and Base58Check-encoded as a P2SH address becomes +39RF6JqABiHdYHkfChV6USGMe6Nsr66Gzw+. Now, Mohammed can give this "address" to his customers and they can use almost any bitcoin wallet to make a simple payment, as if it were a bitcoin address. The 3 prefix gives them a hint that this is a special type of address, one corresponding to a script instead of a public key, but otherwise it works in exactly the same way as a payment to a bitcoin address.
|
||||
((("addresses, bitcoin","Pay-to-Script-Hash (P2SH)")))((("Pay-to-script-hash (P2SH)","addresses")))Another important part of the P2SH feature is the ability to encode a script hash as an address, as defined in BIP0013. P2SH addresses are Base58Check encodings of the 20-byte hash of a script, just like bitcoin addresses are Base58Check encodings of the 20-byte hash of a public key. P2SH addresses use the version prefix "5", which results in Base58Check-encoded addresses that start with a "3". For example, Mohammed's complex script, hashed and Base58Check-encoded as a P2SH address becomes +39RF6JqABiHdYHkfChV6USGMe6Nsr66Gzw+. Now, Mohammed can give this "address" to his customers and they can use almost any bitcoin wallet to make a simple payment, as if it were a bitcoin address. The 3 prefix gives them a hint that this is a special type of address, one corresponding to a script instead of a public key, but otherwise it works in exactly the same way as a payment to a bitcoin address.
|
||||
|
||||
P2SH addresses hide all of the complexity, so that the person making a payment does not see the script.
|
||||
|
||||
|
@ -155,7 +155,7 @@ image::images/msbt_0606.png["InventorySynchronization"]
|
||||
[[spv_nodes]]
|
||||
=== Simplified Payment Verification (SPV) Nodes
|
||||
|
||||
((("nodes","SPV nodes", id="ix_ch06-asciidoc5", range="startofrange")))((("simplified payment verification (SPV) nodes", id="ix_ch06-asciidoc6", range="startofrange")))Not all nodes have the ability to store the full block chain. Many bitcoin clients are designed to run on space- and power-constrained devices, such as smartphones, tablets, or embedded systems. For such devices, a _simplified payment verification_ (SPV) method is used to allow them to operate without storing the full block chain. These types of clients are called SPV clients or lightweight clients. As bitcoin adoption surges, the SPV node is becoming the most common form of bitcoin node, especially for bitcoin wallets.
|
||||
((("nodes","SPV", id="ix_ch06-asciidoc5", range="startofrange")))((("nodes","lightweight", id="ix_ch06-asciidoc5a", range="startofrange")))((("simplified payment verification (SPV) nodes", id="ix_ch06-asciidoc6", range="startofrange")))Not all nodes have the ability to store the full block chain. Many bitcoin clients are designed to run on space- and power-constrained devices, such as smartphones, tablets, or embedded systems. For such devices, a _simplified payment verification_ (SPV) method is used to allow them to operate without storing the full block chain. These types of clients are called SPV clients or lightweight clients. As bitcoin adoption surges, the SPV node is becoming the most common form of bitcoin node, especially for bitcoin wallets.
|
||||
|
||||
((("block chains","on SPV nodes")))SPV nodes download only the block headers and do not download the transactions included in each block. The resulting chain of blocks, without transactions, is 1,000 times smaller than the full block chain. SPV nodes cannot construct a full picture of all the UTXOs that are available for spending because they do not know about all the transactions on the network. SPV nodes verify transactions using a slightly different methodology that relies on peers to provide partial views of relevant parts of the block chain on demand.
|
||||
|
||||
@ -182,7 +182,7 @@ image::images/msbt_0607.png["SPVSynchronization"]
|
||||
|
||||
Because SPV nodes need to retrieve specific transactions in order to selectively verify them, they also create a privacy risk. Unlike full block chain nodes, which collect all transactions within each block, the SPV node's requests for specific data can inadvertently reveal the addresses in their wallet. For example, a third party monitoring a network could keep track of all the transactions requested by a wallet on an SPV node and use those to associate bitcoin addresses with the user of that wallet, destroying the user's privacy.
|
||||
|
||||
Shortly after the introduction of SPV/lightweight nodes, the bitcoin developers added a feature called _bloom filters_ to address the privacy risks of SPV nodes. Bloom filters allow SPV nodes to receive a subset of the transactions without revealing precisely which addresses they are interested in, through a filtering mechanism that uses probabilities rather than fixed patterns.(((range="endofrange", startref="ix_ch06-asciidoc6")))(((range="endofrange", startref="ix_ch06-asciidoc5")))
|
||||
Shortly after the introduction of SPV/lightweight nodes, the bitcoin developers added a feature called _bloom filters_ to address the privacy risks of SPV nodes. Bloom filters allow SPV nodes to receive a subset of the transactions without revealing precisely which addresses they are interested in, through a filtering mechanism that uses probabilities rather than fixed patterns.(((range="endofrange", startref="ix_ch06-asciidoc6")))(((range="endofrange", startref="ix_ch06-asciidoc5a")))(((range="endofrange", startref="ix_ch06-asciidoc5")))
|
||||
|
||||
=== Bloom Filters
|
||||
|
||||
|
@ -4,7 +4,7 @@
|
||||
|
||||
=== Introduction
|
||||
|
||||
((("block chains", id="ix_ch07-asciidoc0", range="startofrange")))The block chain data structure is an ordered, back-linked list of blocks of transactions. The block chain can be stored as a flat file, or in a simple database. The Bitcoin Core client stores the block chain metadata using((("Google")))((("LevelDB database"))) Google's LevelDB database. Blocks are linked "back," each referring to the previous block in the chain. The block chain is often visualized as a vertical stack, with blocks layered on top of each other and the first block serving as the foundation of the stack. The visualization of blocks stacked on top of each other results in the use of terms such as "height" to refer to the distance from the first block, and "top" or "tip" to refer to the most recently added block.
|
||||
((("block chains", id="ix_ch07-asciidoc0", range="startofrange")))The block chain data structure is an ordered, back-linked list of blocks of transactions. The block chain can be stored as a flat file, or in a simple database. The Bitcoin Core client stores the block chain metadata using((("LevelDB database (Google)"))) Google's LevelDB database. Blocks are linked "back," each referring to the previous block in the chain. The block chain is often visualized as a vertical stack, with blocks layered on top of each other and the first block serving as the foundation of the stack. The visualization of blocks stacked on top of each other results in the use of terms such as "height" to refer to the distance from the first block, and "top" or "tip" to refer to the most recently added block.
|
||||
|
||||
Each block within the block chain is identified by a hash, generated using the SHA256 cryptographic hash algorithm on the header of the block. Each block also references a previous block, known as the((("parent blocks"))) _parent_ block, through the "previous block hash" field in the block header. In other words, each block contains the hash of its parent inside its own header. The sequence of hashes linking each block to its parent creates a chain going back all the way to the first block ever created, known as the((("genesis block"))) _genesis block_.
|
||||
|
||||
|
@ -684,7 +684,7 @@ Note that the target difficulty is independent of the number of transactions or
|
||||
|
||||
=== Successfully Mining the Block
|
||||
|
||||
((("consensus","mining blocks successfully")))As we saw earlier, Jing's node has constructed a candidate block and prepared it for mining. Jing has several hardware mining rigs with((("application-specific integrated circuits"))) application-specific integrated circuits, where hundreds of thousands of integrated circuits run the SHA256 algorithm in parallel at incredible speeds. These specialized machines are connected to his mining node over USB. Next, the mining node running on Jing's desktop transmits the block header to his mining hardware, which starts testing trillions of nonces per second.
|
||||
((("consensus","mining blocks successfully")))As we saw earlier, Jing's node has constructed a candidate block and prepared it for mining. Jing has several hardware mining rigs with((("Application Specific Integrated Circuit (ASIC)","mining with"))) application-specific integrated circuits, where hundreds of thousands of integrated circuits run the SHA256 algorithm in parallel at incredible speeds. These specialized machines are connected to his mining node over USB. Next, the mining node running on Jing's desktop transmits the block header to his mining hardware, which starts testing trillions of nonces per second.
|
||||
|
||||
Almost 11 minutes after starting to mine block 277,316, one of the hardware mining machines finds a solution and sends it back to the mining node. When inserted into the block header, the nonce 4,215,469,401 produces a block hash of:
|
||||
|
||||
@ -784,7 +784,7 @@ Bitcoin's block interval of 10 minutes is a design compromise between fast confi
|
||||
|
||||
=== Mining and the Hashing Race
|
||||
|
||||
((("hashing race", id="ix_ch08-asciidoc23", range="startofrange")))((("mining","hashing race and", id="ix_ch08-asciidoc24", range="startofrange")))((("processing power and hash racing", id="ix_ch08-asciidoc25", range="startofrange")))Bitcoin mining is an extremely competitive industry. The hashing power has increased exponentially every year of bitcoin's existence. Some years the growth has reflected a complete change of technology, such as in 2010 and 2011 when many miners switched from using CPU mining to((("graphical processing units (GPUs)","processing power of"))) GPU mining and((("field programmable gate array (FPGA)"))) field programmable gate array (FPGA) mining. In 2013 the introduction of((("application-specific integrated circuit (ASIC)"))) ASIC mining lead to another giant leap in mining power, by placing the SHA256 function directly on silicon chips specialized for the purpose of mining. The first such chips could deliver more mining power in a single box than the entire bitcoin network in 2010.
|
||||
((("hashing race", id="ix_ch08-asciidoc23", range="startofrange")))((("mining","hashing race and", id="ix_ch08-asciidoc24", range="startofrange")))((("processing power and hash racing", id="ix_ch08-asciidoc25", range="startofrange")))Bitcoin mining is an extremely competitive industry. The hashing power has increased exponentially every year of bitcoin's existence. Some years the growth has reflected a complete change of technology, such as in 2010 and 2011 when many miners switched from using CPU mining to((("graphical processing units (GPUs)","processing power of"))) GPU mining and((("field programmable gate array (FPGA)"))) field programmable gate array (FPGA) mining. In 2013 the introduction of((("Application Specific Integrated Circuit (ASIC)"))) ASIC mining lead to another giant leap in mining power, by placing the SHA256 function directly on silicon chips specialized for the purpose of mining. The first such chips could deliver more mining power in a single box than the entire bitcoin network in 2010.
|
||||
|
||||
The following list shows the total hashing power of the bitcoin network, over the first five years of operation:
|
||||
|
||||
@ -807,12 +807,12 @@ image::images/msbt_0807.png["NetworkHashingRate"]
|
||||
.Bitcoin's mining difficulty metric, over two years
|
||||
image::images/msbt_0808.png["BitcoinDifficulty"]
|
||||
|
||||
In the last two years, the ASIC mining chips have become increasingly denser, approaching the cutting edge of silicon fabrication with a feature size (resolution) of 22 nanometers (nm). Currently, ASIC manufacturers are aiming to overtake general-purpose CPU chip manufacturers, designing chips with a feature size of 16nm, because the profitability of mining is driving this industry even faster than general computing. There are no more giant leaps left in bitcoin mining, because the industry has reached the forefront of((("Moores Law"))) Moore's Law, which stipulates that computing density will double approximately every 18 months. Still, the mining power of the network continues to advance at an exponential pace as the race for higher density chips is matched ((("data centers, mining with")))with a race for higher density data centers where thousands of these chips can be deployed. It's no longer about how much mining can be done with one chip, but how many chips can be squeezed into a building, while still dissipating the heat and providing adequate power.
|
||||
In the last two years, the ASIC mining chips have become increasingly denser, approaching the cutting edge of silicon fabrication with a feature size (resolution) of 22 nanometers (nm). Currently, ASIC manufacturers are aiming to overtake general-purpose CPU chip manufacturers, designing chips with a feature size of 16nm, because the profitability of mining is driving this industry even faster than general computing. There are no more giant leaps left in bitcoin mining, because the industry has reached the forefront of((("Moore's Law"))) Moore's Law, which stipulates that computing density will double approximately every 18 months. Still, the mining power of the network continues to advance at an exponential pace as the race for higher density chips is matched ((("data centers, mining with")))with a race for higher density data centers where thousands of these chips can be deployed. It's no longer about how much mining can be done with one chip, but how many chips can be squeezed into a building, while still dissipating the heat and providing adequate power.
|
||||
|
||||
[[extra_nonce]]
|
||||
==== The Extra Nonce Solution
|
||||
|
||||
((("block headers","computing power and")))((("difficulty target","computing power and")))((("difficulty target","extra nonce solution and")))((("extra nonce solution to increasing difficulty targets")))((("hashing race","extra nonce solutions")))Since 2012, bitcoin mining has evolved to resolve a fundamental limitation in the structure of the block header. In the early days of bitcoin, a miner could find a block by iterating through the nonce until the resulting hash was below the target. As difficulty increased, miners often cycled through all 4 billion values of the nonce without finding a block. However, this was easily resolved by updating the block timestamp to account for the elapsed time. Because the timestamp is part of the header, the change would allow miners to iterate through the values of the nonce again with different results. Once mining hardware exceeded 4 GH/sec, however, this approach became increasingly difficult because the nonce values were exhausted in less than a second. As ASIC mining equipment started pushing and then exceeding the TH/sec hash rate, the mining software needed more space for nonce values in order to find valid blocks. The timestamp could be stretched a bit, but moving it too far into the future would cause the block to become invalid. A new source of "change" was needed in the block header. The solution was to use the coinbase transaction as a source of extra nonce values. Because the coinbase script can store between 2 and 100 bytes of data, miners started using that space as extra nonce space, allowing them to explore a much larger range of block header values to find valid blocks. The coinbase transaction is included in the merkle tree, which means that any change in the coinbase script causes the merkle root to change. Eight bytes of extra nonce, plus the 4 bytes of "standard" nonce allow miners to explore a total 2^96^ (8 followed by 28 zeros) possibilities _per second_ without having to modify the timestamp. If, in the future, miners could run through all these possibilities, they could then modify the timestamp. There is also more space in the coinbase script for future expansion of the extra nonce space.
|
||||
((("block headers","computing power and")))((("difficulty target","computing power and")))((("difficulty target","extra nonce solution and")))((("nonce","extra")))((("extra nonce solution to increasing difficulty targets")))((("hashing race","extra nonce solutions")))Since 2012, bitcoin mining has evolved to resolve a fundamental limitation in the structure of the block header. In the early days of bitcoin, a miner could find a block by iterating through the nonce until the resulting hash was below the target. As difficulty increased, miners often cycled through all 4 billion values of the nonce without finding a block. However, this was easily resolved by updating the block timestamp to account for the elapsed time. Because the timestamp is part of the header, the change would allow miners to iterate through the values of the nonce again with different results. Once mining hardware exceeded 4 GH/sec, however, this approach became increasingly difficult because the nonce values were exhausted in less than a second. As ASIC mining equipment started pushing and then exceeding the TH/sec hash rate, the mining software needed more space for nonce values in order to find valid blocks. The timestamp could be stretched a bit, but moving it too far into the future would cause the block to become invalid. A new source of "change" was needed in the block header. The solution was to use the coinbase transaction as a source of extra nonce values. Because the coinbase script can store between 2 and 100 bytes of data, miners started using that space as extra nonce space, allowing them to explore a much larger range of block header values to find valid blocks. The coinbase transaction is included in the merkle tree, which means that any change in the coinbase script causes the merkle root to change. Eight bytes of extra nonce, plus the 4 bytes of "standard" nonce allow miners to explore a total 2^96^ (8 followed by 28 zeros) possibilities _per second_ without having to modify the timestamp. If, in the future, miners could run through all these possibilities, they could then modify the timestamp. There is also more space in the coinbase script for future expansion of the extra nonce space.
|
||||
|
||||
[[mining_pools]]
|
||||
==== Mining Pools
|
||||
@ -843,7 +843,7 @@ Pool miners connect to the pool server using a mining protocol such as((("Stratu
|
||||
|
||||
===== P2Pool
|
||||
|
||||
((("mining pools","P2Pools")))((("P2Pools")))Managed pools create the possibility of cheating by the pool operator, who might direct the pool effort to double-spend transactions or invalidate blocks (see <<consensus_attacks>>). Furthermore, centralized pool servers represent a single-point-of-failure. If the pool server is down or is slowed by a denial-of-service attack, the pool miners cannot mine. In 2011, to resolve these issues of centralization, a new pool mining method was proposed and implemented: P2Pool is a peer-to-peer mining pool, without a central operator.
|
||||
((("mining pools","P2Pool")))((("P2Pool")))Managed pools create the possibility of cheating by the pool operator, who might direct the pool effort to double-spend transactions or invalidate blocks (see <<consensus_attacks>>). Furthermore, centralized pool servers represent a single-point-of-failure. If the pool server is down or is slowed by a denial-of-service attack, the pool miners cannot mine. In 2011, to resolve these issues of centralization, a new pool mining method was proposed and implemented: P2Pool is a peer-to-peer mining pool, without a central operator.
|
||||
|
||||
P2Pool works by decentralizing the functions of the pool server, implementing a parallel block chain-like system called a((("share chains"))) _share chain_. A share chain is a block chain running at a lower difficulty than the bitcoin block chain. The share chain allows pool miners to collaborate in a decentralized pool, by mining shares on the share chain at a rate of one share block every 30 seconds. Each of the blocks on the share chain records a proportionate share reward for the pool miners who contribute work, carrying the shares forward from the previous share block. When one of the share blocks also achieves the difficulty target of the bitcoin network, it is propagated and included on the bitcoin block chain, rewarding all the pool miners who contributed to all the shares that preceded the winning share block. Essentially, instead of a pool server keeping track of pool miner shares and rewards, the share chain allows all pool miners to keep track of all shares using a decentralized consensus mechanism like bitcoin's block chain consensus mechanism.
|
||||
|
||||
|
@ -62,13 +62,13 @@ To demonstrate the use of colored coins, we have created a set of 20 colored coi
|
||||
|
||||
==== Mastercoin
|
||||
|
||||
((("mastercoin protocol")))((("meta-coin platforms","mastercoin protocol")))Mastercoin is a protocol layer on top of bitcoin that supports a platform for various applications extending the bitcoin system. Mastercoin uses the currency MST as a token for conducting Mastercoin transactions but it is not primarily a currency. Rather, it is a platform for building other things, such as user currencies, smart property tokens, de-centralized asset exchanges, and contracts. Think of Mastercoin as an application-layer protocol on top of bitcoin's financial transaction transport layer, just like HTTP runs on top of TCP.
|
||||
((("meta-coin platforms","mastercoin protocol")))Mastercoin is a protocol layer on top of bitcoin that supports a platform for various applications extending the bitcoin system. Mastercoin uses the currency MST as a token for conducting Mastercoin transactions but it is not primarily a currency. Rather, it is a platform for building other things, such as user currencies, smart property tokens, de-centralized asset exchanges, and contracts. Think of Mastercoin as an application-layer protocol on top of bitcoin's financial transaction transport layer, just like HTTP runs on top of TCP.
|
||||
|
||||
Mastercoin operates primarily through transactions sent to and from a special bitcoin address called the((("exodus addresses"))) "exodus" address (+1EXoDusjGwvnjZUyKkxZ4UHEf77z6A5S4P+), just like HTTP uses a specific TCP port (port 80) to differentiate its traffic from the rest of the TCP traffic. The Mastercoin protocol is gradually transitioning from using the specialized exodus address and multi-signatures to using the OP_RETURN bitcoin operator to encode transaction metadata.
|
||||
|
||||
==== Counterparty
|
||||
|
||||
((("counterparty protocol")))((("meta coin platforms","counterparty protocol")))((("OP_RETURN operator","Counterparty and")))Counterparty is another protocol layer implemented on top of bitcoin. Counterparty enables user currencies, tradable tokens, financial instruments, decentralized asset exchanges, and other features. Counterparty is implemented primarily using the +OP_RETURN+ operator in bitcoin's scripting language to record metadata that enhances bitcoin transactions with additional meaning. Counterparty uses the currency XCP as a token for conducting Counterparty transactions.(((range="endofrange", startref="ix_ch09-asciidoc0")))
|
||||
((("meta coin platforms","counterparty protocol")))Counterparty is another protocol layer implemented on top of bitcoin. Counterparty enables user currencies, tradable tokens, financial instruments, decentralized asset exchanges, and other features. Counterparty is implemented primarily using the +OP_RETURN+ operator in bitcoin's scripting language to record metadata that enhances bitcoin transactions with additional meaning. Counterparty uses the currency XCP as a token for conducting Counterparty transactions.(((range="endofrange", startref="ix_ch09-asciidoc0")))
|
||||
|
||||
=== Alt Coins
|
||||
|
||||
@ -76,9 +76,9 @@ Mastercoin operates primarily through transactions sent to and from a special bi
|
||||
|
||||
Strictly speaking, the first major "alt" fork of bitcoin's code was not an alt coin but the alt chain _Namecoin_, which we will discuss in the next section.
|
||||
|
||||
Based on the date of announcement, the first alt coin that was a fork of bitcoin appeared in August 2011; it was called ((("IXCoin"))) _IXCoin_. IXCoin modified a few of the bitcoin parameters, specifically accelerating the creation of currency by increasing the reward to 96 coins per block.
|
||||
Based on the date of announcement, the first alt coin that was a fork of bitcoin appeared in August 2011; it was called _IXCoin_. IXCoin modified a few of the bitcoin parameters, specifically accelerating the creation of currency by increasing the reward to 96 coins per block.
|
||||
|
||||
In September 2011,((("Tenebrix"))) _Tenebrix_ was launched. Tenebrix was the first cryptocurrency to implement an alternative proof-of-work algorithm, namely((("proof-of-work algorithm","alternative")))((("scrypt algorithm"))) _scrypt_, an algorithm originally designed for password stretching (brute-force resistance). The stated goal of Tenebrix was to make a coin that was resistant to mining with GPUs and ASICs, by using a memory-intensive algorithm. Tenebrix did not succeed as a currency, but it was the basis for((("Litecoin"))) Litecoin, which has enjoyed great success and has spawned hundreds of clones.
|
||||
In September 2011, _Tenebrix_ was launched. Tenebrix was the first cryptocurrency to implement an alternative proof-of-work algorithm, namely((("proof-of-work algorithm","alternative")))((("scrypt algorithm"))) _scrypt_, an algorithm originally designed for password stretching (brute-force resistance). The stated goal of Tenebrix was to make a coin that was resistant to mining with GPUs and ASICs, by using a memory-intensive algorithm. Tenebrix did not succeed as a currency, but it was the basis for Litecoin, which has enjoyed great success and has spawned hundreds of clones.
|
||||
|
||||
_Litecoin_, in addition to using scrypt as the proof-of-work algorithm, also implemented a faster block-generation time, targeted at 2.5 minutes instead of bitcoin's 10 minutes. The resulting currency is touted as "silver to bitcoin's gold" and is intended as a light-weight alternative currency. Due to the faster confirmation time and the 84 million total currency limit, many adherents of Litecoin believe it is better suited for retail transactions than bitcoin.
|
||||
|
||||
@ -119,7 +119,7 @@ In this chapter, we will concentrate primarily on the technical characteristics
|
||||
|
||||
===== Litecoin
|
||||
|
||||
((("Litecoin")))One of the first alt coins, released in 2011, Litecoin is the second most successful digital currency after bitcoin. Its primary innovations were the use of _scrypt_ as the proof-of-work algorithm (inherited from Tenebrix) and its faster/lighter currency parameters.
|
||||
One of the first alt coins, released in 2011, Litecoin is the second most successful digital currency after bitcoin. Its primary innovations were the use of _scrypt_ as the proof-of-work algorithm (inherited from Tenebrix) and its faster/lighter currency parameters.
|
||||
|
||||
* Block generation time: 2.5 minutes
|
||||
* Total currency: 84 million coins by 2140
|
||||
@ -128,7 +128,7 @@ In this chapter, we will concentrate primarily on the technical characteristics
|
||||
|
||||
===== Dogecoin
|
||||
|
||||
((("Dogecoin")))Dogecoin was released in December 2013, based on a fork of Litecoin. Dogecoin is notable because it has a monetary policy of rapid issuance and a very high currency cap, to encourage spending and tipping. Dogecoin is also notable because it was started as a joke but became quite popular, with a large and active community, before declining rapidly in 2014.
|
||||
Dogecoin was released in December 2013, based on a fork of Litecoin. Dogecoin is notable because it has a monetary policy of rapid issuance and a very high currency cap, to encourage spending and tipping. Dogecoin is also notable because it was started as a joke but became quite popular, with a large and active community, before declining rapidly in 2014.
|
||||
|
||||
* Block generation time: 60 seconds
|
||||
* Total currency: 100,000,000,000 (100 billion) Doge by 2015
|
||||
@ -137,7 +137,7 @@ In this chapter, we will concentrate primarily on the technical characteristics
|
||||
|
||||
===== Freicoin
|
||||
|
||||
((("Freicoin")))Freicoin was introduced in July 2012. It is a((("demurrage currency"))) _demurrage currency_, meaning it has a negative interest rate for stored value. Value stored in Freicoin is assessed a 4.5% APR fee, to encourage consumption and discourage hoarding of money. Freicoin is notable in that it implements a monetary policy that is the exact opposite of Bitcoin's deflationary policy. Freicoin has not seen success as a currency, but it is an interesting example of the variety of monetary policies that can be expressed by alt coins.
|
||||
Freicoin was introduced in July 2012. It is a((("demurrage currency"))) _demurrage currency_, meaning it has a negative interest rate for stored value. Value stored in Freicoin is assessed a 4.5% APR fee, to encourage consumption and discourage hoarding of money. Freicoin is notable in that it implements a monetary policy that is the exact opposite of Bitcoin's deflationary policy. Freicoin has not seen success as a currency, but it is an interesting example of the variety of monetary policies that can be expressed by alt coins.
|
||||
|
||||
* Block generation: 10 minutes
|
||||
* Total currency: 100 million coins by 2140
|
||||
@ -146,13 +146,13 @@ In this chapter, we will concentrate primarily on the technical characteristics
|
||||
|
||||
==== Consensus Innovation: Peercoin, Myriad, Blackcoin, Vericoin, NXT
|
||||
|
||||
((("alt coins","consensus innovation")))((("consensus","innovation")))Bitcoin's consensus mechanism is based on proof of work using the SHA256 algorithm. The first alt coins introduced scrypt as an alternative proof-of-work algorithm, as a way to make mining more CPU-friendly and less susceptible to centralization with ASICs. Since then, innovation in the consensus mechanism has continued at a frenetic pace. Several alt coins adopted a variety of algorithms such as scrypt,((("Blake algorithm")))((("Groestl algorithm")))((("scrypt-N algorithm")))((("SHA3 algorithm")))((("Skein algorithm")))((("X11 algorithm"))) scrypt-N, Skein, Groestl, SHA3, X11, Blake, and others. Some alt coins combined multiple algorithms for proof of work. In 2013, we saw the invention of an alternative to proof of work, called _proof of stake_, which forms the basis of many modern alt coins.
|
||||
((("alt coins","consensus innovation")))((("consensus","innovation")))Bitcoin's consensus mechanism is based on proof of work using the SHA256 algorithm. The first alt coins introduced scrypt as an alternative proof-of-work algorithm, as a way to make mining more CPU-friendly and less susceptible to centralization with ASICs. Since then, innovation in the consensus mechanism has continued at a frenetic pace. Several alt coins adopted a variety of algorithms such as scrypt,((("Blake algorithm")))((("Groestl algorithm")))((("scrypt-N algorithm")))((("SHA3 algorithm")))((("Skein algorithm"))) scrypt-N, Skein, Groestl, SHA3, X11, Blake, and others. Some alt coins combined multiple algorithms for proof of work. In 2013, we saw the invention of an alternative to proof of work, called((("proof of stake"))) _proof of stake_, which forms the basis of many modern alt coins.
|
||||
|
||||
Proof of stake is a system by which existing owners of a currency can "stake" currency as interest-bearing collateral. Somewhat like a certificate of deposit (CD), participants can reserve a portion of their currency holdings, while earning an investment return in the form of new currency (issued as interest payments) and transaction fees.
|
||||
|
||||
===== Peercoin
|
||||
|
||||
((("Peercoin")))Peercoin was introduced in August 2012 and is the first alt coin to use a hybrid proof-of-work and proof-of-stake algorithm to issue new currency.
|
||||
Peercoin was introduced in August 2012 and is the first alt coin to use a hybrid proof-of-work and proof-of-stake algorithm to issue new currency.
|
||||
|
||||
* Block generation: 10 minutes
|
||||
* Total currency: No limit
|
||||
@ -161,7 +161,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== Myriad
|
||||
|
||||
((("Myriad")))Myriad was introduced in February 2014 and is notable because it uses five different proof-of-work algorithms (SHA256d, Scrypt, Qubit, Skein, or Myriad-Groestl) simultaneously, with difficulty varying for each algorithm depending on miner participation. The intent is to make Myriad immune to ASIC specialization and centralization as well as much more resistant to consensus attacks, because multiple mining algorithms would have to be attacked simultaneously.
|
||||
Myriad was introduced in February 2014 and is notable because it uses five different proof-of-work algorithms (SHA256d, Scrypt, Qubit, Skein, or Myriad-Groestl) simultaneously, with difficulty varying for each algorithm depending on miner participation. The intent is to make Myriad immune to ASIC specialization and centralization as well as much more resistant to consensus attacks, because multiple mining algorithms would have to be attacked simultaneously.
|
||||
|
||||
* Block generation: 30-second average (2.5 minutes target per mining algorithm)
|
||||
* Total currency: 2 billion by 2024
|
||||
@ -170,7 +170,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== Blackcoin
|
||||
|
||||
((("Blackcoin")))Blackcoin was introduced in February 2014 and uses a proof-of-stake consensus algorithm. It is also notable for introducing "multipools," a type of mining pool that can switch between different alt coins automatically, depending on profitability.
|
||||
Blackcoin was introduced in February 2014 and uses a proof-of-stake consensus algorithm. It is also notable for introducing "multipools," a type of mining pool that can switch between different alt coins automatically, depending on profitability.
|
||||
|
||||
* Block generation: 1 minute
|
||||
* Total currency: No limit
|
||||
@ -179,7 +179,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== VeriCoin
|
||||
|
||||
((("VeriCoin")))VeriCoin was launched in May 2014. It uses a proof-of-stake consensus algorithm with a variable interest rate that dynamically adjusts based on market forces of supply and demand. It also is the first alt coin featuring auto-exchange to bitcoin for payment in bitcoin from the wallet.
|
||||
VeriCoin was launched in May 2014. It uses a proof-of-stake consensus algorithm with a variable interest rate that dynamically adjusts based on market forces of supply and demand. It also is the first alt coin featuring auto-exchange to bitcoin for payment in bitcoin from the wallet.
|
||||
|
||||
* Block generation: 1 minute
|
||||
* Total currency: No limit
|
||||
@ -188,7 +188,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== NXT
|
||||
|
||||
((("NXT alt-coin")))NXT (pronounced "Next") is a "pure" proof-of-stake alt coin, in that it does not use proof-of-work mining. NXT is a from-scratch implementation of a cryptocurrency, not a fork of bitcoin or any other alt coins. NXT implements many advanced features, including a name registry (similar to((("Namecoin"))) Namecoin), a decentralized asset exchange (similar to Colored Coins), integrated decentralized and secure messaging (similar to((("Bitmessage"))) Bitmessage), and stake delegation (to delegate proof-of-stake to others). NXT adherents call it a "next-generation" or 2.0 cryptocurrency.
|
||||
NXT (pronounced "Next") is a "pure" proof-of-stake alt coin, in that it does not use proof-of-work mining. NXT is a from-scratch implementation of a cryptocurrency, not a fork of bitcoin or any other alt coins. NXT implements many advanced features, including a name registry (similar to((("Namecoin"))) Namecoin), a decentralized asset exchange (similar to Colored Coins), integrated decentralized and secure messaging (similar to((("Bitmessage"))) Bitmessage), and stake delegation (to delegate proof-of-stake to others). NXT adherents call it a "next-generation" or 2.0 cryptocurrency.
|
||||
|
||||
* Block generation: 1 minute
|
||||
* Total currency: No limit
|
||||
@ -202,7 +202,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== Primecoin
|
||||
|
||||
((("Primecoin")))Primecoin was announced in July 2013. Its proof-of-work algorithm searches for prime numbers, computing((("bi-twin prime chains")))((("Cunningham prime chains"))) Cunningham and bi-twin prime chains. Prime numbers are useful in a variety of scientific disciplines. The Primecoin block chain contains the discovered prime numbers, thereby producing a public record of scientific discovery in parallel to the public ledger of transactions.
|
||||
Primecoin was announced in July 2013. Its proof-of-work algorithm searches for prime numbers, computing((("bi-twin prime chains")))((("Cunningham prime chains"))) Cunningham and bi-twin prime chains. Prime numbers are useful in a variety of scientific disciplines. The Primecoin block chain contains the discovered prime numbers, thereby producing a public record of scientific discovery in parallel to the public ledger of transactions.
|
||||
|
||||
* Block generation: 1 minute
|
||||
* Total currency: No limit
|
||||
@ -211,7 +211,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== Curecoin
|
||||
|
||||
((("Curecoin")))((("protein folding algorithms")))Curecoin was announced in May 2013. It combines a SHA256 proof-of-work algorithm with protein-folding research through the Folding@Home project. Protein folding is a computationally intensive simulation of biochemical interactions of proteins, used to discover new drug targets for curing diseases.
|
||||
((("protein folding algorithms")))Curecoin was announced in May 2013. It combines a SHA256 proof-of-work algorithm with protein-folding research through the Folding@Home project. Protein folding is a computationally intensive simulation of biochemical interactions of proteins, used to discover new drug targets for curing diseases.
|
||||
|
||||
* Block generation: 10 minutes
|
||||
* Total currency: No limit
|
||||
@ -220,7 +220,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== Gridcoin
|
||||
|
||||
((("Gridcoin")))Gridcoin was introduced in October 2013. It supplements scrypt-based proof of work with subsidies for participation in((("BOINC open grid computing"))) BOINC open grid computing. BOINC—Berkeley Open Infrastructure for Network Computing—is an open protocol for scientific research grid computing, which allows participants to share their spare computing cycles for a broad range of academic research computing. Gridcoin uses BOINC as a general-purpose computing platform, rather than to solve specific science problems such as prime numbers or protein folding.
|
||||
Gridcoin was introduced in October 2013. It supplements scrypt-based proof of work with subsidies for participation in((("BOINC open grid computing"))) BOINC open grid computing. BOINC—Berkeley Open Infrastructure for Network Computing—is an open protocol for scientific research grid computing, which allows participants to share their spare computing cycles for a broad range of academic research computing. Gridcoin uses BOINC as a general-purpose computing platform, rather than to solve specific science problems such as prime numbers or protein folding.
|
||||
|
||||
* Block generation: 150 seconds
|
||||
* Total currency: No limit
|
||||
@ -229,19 +229,19 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
==== Anonymity-Focused Alt Coins: CryptoNote, Bytecoin, Monero, Zerocash/Zerocoin, Darkcoin
|
||||
|
||||
((("alt coins","anonymity focused", id="ix_ch09-asciidoc3", range="startofrange")))((("currencies, alternative","anonymity focused", id="ix_ch09-asciidoc4", range="startofrange")))Bitcoin is often mistakenly characterized as "anonymous" currency. In fact, it is relatively easy to connect identities to bitcoin addresses and, using big-data analytics, connect addresses to each other to form a comprehensive picture of someone's bitcoin spending habits. Several alt coins aim to address this issue directly by focusing on strong anonymity. The first such attempt is most likely _Zerocoin_, a meta-coin protocol for preserving anonymity on top of bitcoin, introduced with a paper at the((("IEEE Symposium on Security and Privacy"))) 2013 IEEE Symposium on Security and Privacy. Zerocoin will be implemented as a completely separate alt coin called Zerocash, in development at time of writing. An alternative approach to anonymity was launched with _CryptoNote_ in a paper published in October 2013. CryptoNote is a foundational technology that is implemented by a number of alt coin forks discussed next. In addition to Zerocash and CryptoNotes, there are several other independent anonymous coins, such as Darkcoin, that use stealth addresses or transaction re-mixing to deliver anonymity.
|
||||
((("alt coins","anonymity focused", id="ix_ch09-asciidoc3", range="startofrange")))((("currencies, alternative","anonymity focused", id="ix_ch09-asciidoc4", range="startofrange")))Bitcoin is often mistakenly characterized as "anonymous" currency. In fact, it is relatively easy to connect identities to bitcoin addresses and, using big-data analytics, connect addresses to each other to form a comprehensive picture of someone's bitcoin spending habits. Several alt coins aim to address this issue directly by focusing on strong anonymity. The first such attempt is most likely _Zerocoin_, a meta-coin protocol for preserving anonymity on top of bitcoin, introduced with a paper at the 2013 IEEE Symposium on Security and Privacy. Zerocoin will be implemented as a completely separate alt coin called Zerocash, in development at time of writing. An alternative approach to anonymity was launched with _CryptoNote_ in a paper published in October 2013. CryptoNote is a foundational technology that is implemented by a number of alt coin forks discussed next. In addition to Zerocash and CryptoNotes, there are several other independent anonymous coins, such as Darkcoin, that use stealth addresses or transaction re-mixing to deliver anonymity.
|
||||
|
||||
===== Zerocoin/Zerocash
|
||||
|
||||
((("Zerocash")))((("Zerocoin")))Zerocoin is a theoretical approach to digital currency anonymity introduced in 2013 by researchers at Johns Hopkins. Zerocash is an alt-coin implementation of Zerocoin that is in development and not yet released.
|
||||
Zerocoin is a theoretical approach to digital currency anonymity introduced in 2013 by researchers at Johns Hopkins. Zerocash is an alt-coin implementation of Zerocoin that is in development and not yet released.
|
||||
|
||||
===== CryptoNote
|
||||
|
||||
((("CryptoNote")))CryptoNote is a reference implementation alt coin that provides the basis for anonymous digital cash. It was introduced in October 2013. It is designed to be forked into different implementations and has a built-in periodic reset mechanism that makes it unusable as a currency itself. Several alt coins have been spawned from CryptoNote, including((("Aeon (AEON) alt coin")))((("Boolberry (BBR) alt coin")))((("Bytecoin (BCN)")))((("duckNote (DUCK) alt coin")))((("Fantomcoin (FCN) alt coin")))((("Monero (XMR) alt coin")))((("MonetaVerde (MCN) alt coin")))((("Quazarcoin (QCN) alt coin"))) Bytecoin (BCN), Aeon (AEON), Boolberry (BBR), duckNote (DUCK), Fantomcoin (FCN), Monero (XMR), MonetaVerde (MCN), and Quazarcoin (QCN). CryptoNote is also notable for being a complete ground-up implementation of a crypto-currency, not a fork of bitcoin.
|
||||
CryptoNote is a reference implementation alt coin that provides the basis for anonymous digital cash. It was introduced in October 2013. It is designed to be forked into different implementations and has a built-in periodic reset mechanism that makes it unusable as a currency itself. Several alt coins have been spawned from CryptoNote, including Bytecoin (BCN), Aeon (AEON), Boolberry (BBR), duckNote (DUCK), Fantomcoin (FCN), Monero (XMR), MonetaVerde (MCN), and Quazarcoin (QCN). CryptoNote is also notable for being a complete ground-up implementation of a crypto-currency, not a fork of bitcoin.
|
||||
|
||||
===== Bytecoin
|
||||
|
||||
((("Application Specific Integrated Circuit (ASIC)","Bytecoin and")))((("Bytecoin (BCN)")))((("Graphical Processing Units (GPUs)","Bytecoin and")))Bytecoin was the first implementation spawned from CryptoNote, offering a viable anonymous currency based on the CryptoNote technology. Bytecoin was launched in July 2012. Note that there was a previous alt coin named Bytecoin with currency symbol BTE, whereas the CryptoNote-derived Bytecoin has the currency symbol BCN. Bytecoin uses the Cryptonight proof-of-work algorithm, which requires access to at least 2 MB of RAM per instance, making it unsuitable for GPU or ASIC mining. Bytecoin inherits ring signatures, unlinkable transactions, and block chain analysis–resistant anonymity from CryptoNote.
|
||||
((("Application Specific Integrated Circuit (ASIC)")))((("Graphical Processing Units (GPUs)")))Bytecoin was the first implementation spawned from CryptoNote, offering a viable anonymous currency based on the CryptoNote technology. Bytecoin was launched in July 2012. Note that there was a previous alt coin named Bytecoin with currency symbol BTE, whereas the CryptoNote-derived Bytecoin has the currency symbol BCN. Bytecoin uses the Cryptonight proof-of-work algorithm, which requires access to at least 2 MB of RAM per instance, making it unsuitable for GPU or ASIC mining. Bytecoin inherits ring signatures, unlinkable transactions, and block chain analysis–resistant anonymity from CryptoNote.
|
||||
|
||||
* Block generation: 2 minutes
|
||||
* Total currency: 184 billion BCN
|
||||
@ -250,7 +250,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== Monero
|
||||
|
||||
((("Monero (XMR) alt coin")))Monero is another implementation of CryptoNote. It has a slightly flatter issuance curve than Bytecoin, issuing 80% of the currency in the first four years. It offers the same anonymity features inherited from CryptoNote.
|
||||
Monero is another implementation of CryptoNote. It has a slightly flatter issuance curve than Bytecoin, issuing 80% of the currency in the first four years. It offers the same anonymity features inherited from CryptoNote.
|
||||
|
||||
* Block generation: 1 minute
|
||||
* Total currency: 18.4 million XMR
|
||||
@ -259,7 +259,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
===== Darkcoin
|
||||
|
||||
((("Darkcoin")))Darkcoin was launched in January 2014. Darkcoin implements anonymous currency using a re-mixing protocol for all transactions called DarkSend. Darkcoin is also notable for using 11 rounds of different hash functions((("proof-of-work algorithm","for Darkcoin"))) (blake, bmw, groestl, jh, keccak, skein, luffa, cubehash, shavite, simd, echo) for the proof-of-work algorithm.
|
||||
Darkcoin was launched in January 2014. Darkcoin implements anonymous currency using a re-mixing protocol for all transactions called DarkSend. Darkcoin is also notable for using 11 rounds of different hash functions((("proof-of-work algorithm","for Darkcoin"))) (blake, bmw, groestl, jh, keccak, skein, luffa, cubehash, shavite, simd, echo) for the proof-of-work algorithm.
|
||||
|
||||
* Block generation: 2.5 minutes
|
||||
* Total currency: Maximum 22 million DRK
|
||||
@ -272,7 +272,7 @@ Proof of stake is a system by which existing owners of a currency can "stake" cu
|
||||
|
||||
==== Namecoin
|
||||
|
||||
((("Namecoin", id="ix_ch09-asciidoc7", range="startofrange")))Namecoin was the first fork of the bitcoin code. Namecoin is a decentralized key-value registration and transfer platform using a block chain. It supports a global domain-name registry similar to the domain-name registration system on the Internet. Namecoin is currently used as an alternative((("domain name service (DNS)"))) domain name service (DNS) for the root-level domain +.bit+. Namecoin also can be used to register names and key-value pairs in other namespaces; for storing things like email addresses, encryption keys, SSL certificates, file signatures, voting systems, stock certificates; and a myriad of other applications.
|
||||
Namecoin was the first fork of the bitcoin code. Namecoin is a decentralized key-value registration and transfer platform using a block chain. It supports a global domain-name registry similar to the domain-name registration system on the Internet. Namecoin is currently used as an alternative((("domain name service (DNS)"))) domain name service (DNS) for the root-level domain +.bit+. Namecoin also can be used to register names and key-value pairs in other namespaces; for storing things like email addresses, encryption keys, SSL certificates, file signatures, voting systems, stock certificates; and a myriad of other applications.
|
||||
|
||||
The Namecoin system includes the Namecoin currency (symbol NMC), which is used to pay transaction fees for registration and transfer of names. At current prices, the fee to register a name is 0.01 NMC or approximately 1 US cent. As in bitcoin, the fees are collected by namecoin miners.
|
||||
|
||||
@ -335,15 +335,15 @@ $ namecoind name_list
|
||||
----
|
||||
====
|
||||
|
||||
Namecoin registrations need to be updated every 36,000 blocks (approximately 200 to 250 days). The +name_update+ command has no fee and therefore renewing domains in Namecoin is free. Third-party providers can handle registration, automatic renewal, and updating via a web interface, for a small fee. With a third-party provider you avoid the need to run a Namecoin client, but you lose the independent control of a decentralized name registry offered by Namecoin.(((range="endofrange", startref="ix_ch09-asciidoc7")))
|
||||
Namecoin registrations need to be updated every 36,000 blocks (approximately 200 to 250 days). The +name_update+ command has no fee and therefore renewing domains in Namecoin is free. Third-party providers can handle registration, automatic renewal, and updating via a web interface, for a small fee. With a third-party provider you avoid the need to run a Namecoin client, but you lose the independent control of a decentralized name registry offered by Namecoin.
|
||||
|
||||
==== Bitmessage
|
||||
|
||||
((("Bitmessage")))((("messages, sending in blockchain")))Bitmessage is a bitcoin alt chain that implements a decentralized secure messaging service, essentially a server-less encrypted email system. Bitmessage allows users to compose and send messages to each other, using a Bitmessage address. The messages operate in much the same way as a bitcoin transaction, but they are transient—they do not persist beyond two days and if not delivered to the destination node in that time, they are lost. Senders and recipients are pseudonymous—they have no identifiers other than a bitmessage address—but are strongly authenticated, meaning that messages cannot be "spoofed." Bitmessages are encrypted to the recipient and therefore the Bitmessage network is resistant to holistic surveillance—an eavesdropper has to compromise the recipient's device in order to intercept messages.
|
||||
((("messages, sending in blockchain")))Bitmessage is a bitcoin alt chain that implements a decentralized secure messaging service, essentially a server-less encrypted email system. Bitmessage allows users to compose and send messages to each other, using a Bitmessage address. The messages operate in much the same way as a bitcoin transaction, but they are transient—they do not persist beyond two days and if not delivered to the destination node in that time, they are lost. Senders and recipients are pseudonymous—they have no identifiers other than a bitmessage address—but are strongly authenticated, meaning that messages cannot be "spoofed." Bitmessages are encrypted to the recipient and therefore the Bitmessage network is resistant to holistic surveillance—an eavesdropper has to compromise the recipient's device in order to intercept messages.
|
||||
|
||||
==== Ethereum
|
||||
|
||||
((("contracts, in Ethereum")))((("ether alt currency")))((("Ethereum")))Ethereum is a Turing-complete contract processing and execution platform based on a block chain ledger. It is not a clone of Bitcoin, but a completely independent design and implementation. Ethereum has a built-in currency, called _ether_, which is required in order to pay for contract execution. Ethereum's block chain records _contracts_, which are expressed in a low-level, byte code–like, Turing-complete language. Essentially, a contract is a program that runs on every node in the Ethereum system. Ethereum contracts can store data, send and receive ether payments, store ether, and execute an infinite range (hence Turing-complete) of computable actions, acting as decentralized autonomous software agents.
|
||||
((("contracts, in Ethereum")))Ethereum is a Turing-complete contract processing and execution platform based on a block chain ledger. It is not a clone of Bitcoin, but a completely independent design and implementation. Ethereum has a built-in currency, called _ether_, which is required in order to pay for contract execution. Ethereum's block chain records _contracts_, which are expressed in a low-level, byte code–like, Turing-complete language. Essentially, a contract is a program that runs on every node in the Ethereum system. Ethereum contracts can store data, send and receive ether payments, store ether, and execute an infinite range (hence Turing-complete) of computable actions, acting as decentralized autonomous software agents.
|
||||
|
||||
Ethereum can implement quite complex systems that are otherwise implemented as alt chains themselves. For example, the following is a Namecoin-like name registration contract written in Ethereum (or more accurately, written in a high-level language that can be compiled to Ethereum code): (((range="endofrange", startref="ix_ch09-asciidoc6")))(((range="endofrange", startref="ix_ch09-asciidoc5")))
|
||||
|
||||
|
@ -65,7 +65,7 @@ Over the past three years, as a direct result of bitcoin adoption, we have seen
|
||||
|
||||
==== Multi-sig and Governance
|
||||
|
||||
((("corporations, multi-sig governance and")))((("governance")))((("multi-sig addresses","security and")))((("security","governance")))((("security","multi-sig addresses and")))Whenever a company or individual stores large amounts of bitcoin, they should consider using a multi-signature bitcoin address. Multi-signature addresses secure funds by requiring more than one signature to make a payment. The signing keys should be stored in a number of different locations and under the control of different people. In a corporate environment, for example, the keys should be generated independently and held by several company executives, to ensure no single person can compromise the funds. Multi-signature addresses can also offer redundancy, where a single person holds several keys that are stored in different locations.
|
||||
((("corporations, multi-sig governance and")))((("governance")))((("multi-signature addresses","security and")))((("security","governance")))((("security","multi-signature addresses and")))Whenever a company or individual stores large amounts of bitcoin, they should consider using a multi-signature bitcoin address. Multi-signature addresses secure funds by requiring more than one signature to make a payment. The signing keys should be stored in a number of different locations and under the control of different people. In a corporate environment, for example, the keys should be generated independently and held by several company executives, to ensure no single person can compromise the funds. Multi-signature addresses can also offer redundancy, where a single person holds several keys that are stored in different locations.
|
||||
|
||||
==== Survivability
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user