1
0
mirror of https://github.com/bitcoinbook/bitcoinbook synced 2024-12-23 07:08:13 +00:00

Made changes to ch08.asciidoc

This commit is contained in:
myarbrough@oreilly.com 2014-11-18 11:49:15 -08:00
parent 7d2e101a69
commit 8d194e419a

View File

@ -780,7 +780,7 @@ The following list shows the total hashing power of the bitcoin network, over th
In the chart in <<network_hashing_power>>, we see the bitcoin network's hashing power increase over the past two years. As you can see, the competition between miners and the growth of bitcoin has resulted in an exponential increase in the hashing power (total hashes per second across the network).
[[network_hashing_power]]
.Total hashing power, giga-hashes per second, over two years
.Total hashing power, gigahashes per second, over two years
image::images/msbt_0807.png["NetworkHashingRate"]
((("difficulty target","hashing power and")))As the amount of hashing power applied to mining bitcoin has exploded, the difficulty has risen to match it. The difficulty metric in the chart shown in <<bitcoin_difficulty>> is measured as a ratio of current difficulty over minimum difficulty (the difficulty of the first block).
@ -789,7 +789,7 @@ image::images/msbt_0807.png["NetworkHashingRate"]
.Bitcoin's mining difficulty metric, over two years
image::images/msbt_0808.png["BitcoinDifficulty"]
In the last two years, the ASIC mining chips have become denser and denser, approaching the cutting edge of silicon fabrication with a feature size (resolution) of 22 nanometers (nm). Currently, ASIC manufacturers are aiming to overtake general-purpose CPU chip manufacturers, designing chips with a feature size of 16nm, because the profitability of mining is driving this industry even faster than general computing. There are no more giant leaps left in bitcoin mining, because the industry has reached the forefront of((("Moores Law"))) "Moore's Law," which stipulates that computing density will double approximately every 18 months. Still, the mining power of the network continues to advance at an exponential pace as the race for higher density chips is matched ((("data centers, mining with")))with a race for higher density data centers where thousands of these chips can be deployed. It's no longer about how much mining can be done with one chip, but how many chips can be squeezed into a building, while still dissipating the heat and providing adequate power.
In the last two years, the ASIC mining chips have become increasingly denser, approaching the cutting edge of silicon fabrication with a feature size (resolution) of 22 nanometers (nm). Currently, ASIC manufacturers are aiming to overtake general-purpose CPU chip manufacturers, designing chips with a feature size of 16nm, because the profitability of mining is driving this industry even faster than general computing. There are no more giant leaps left in bitcoin mining, because the industry has reached the forefront of((("Moores Law"))) "Moore's Law," which stipulates that computing density will double approximately every 18 months. Still, the mining power of the network continues to advance at an exponential pace as the race for higher density chips is matched ((("data centers, mining with")))with a race for higher density data centers where thousands of these chips can be deployed. It's no longer about how much mining can be done with one chip, but how many chips can be squeezed into a building, while still dissipating the heat and providing adequate power.
[[extra_nonce]]
==== The Extra Nonce Solution