mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2025-01-11 08:10:54 +00:00
Made changes to ch06.asciidoc
This commit is contained in:
parent
8dfbc89db2
commit
7a70f94c60
@ -3,27 +3,27 @@
|
||||
|
||||
=== Peer-to-Peer Network Architecture
|
||||
|
||||
((("bitcoin network", id="ix_ch06-asciidoc0", range="startofrange")))((("bitcoin network","architecture of")))((("peer-to-peer networks")))Bitcoin is structured as a peer-to-peer network architecture on top of the Internet. The term peer-to-peer, or P2P, means that the computers that participate in the network are peers to each other, that they are all equal, that there are no "special" nodes, and that all nodes share the burden of providing network services. The network nodes interconnect in a mesh network with a "flat" topology. There is no "server," no centralized service, and no hierarchy within the network. Nodes in a peer-to-peer network both provide and consume services at the same time with reciprocity acting as the incentive for participation. Peer-to-peer networks are inherently resilient, decentralized, and open. The preeminent example of a P2P network architecture was the early Internet itself, where nodes on the IP network were equal. Today's Internet architecture is more hierarchical, but the Internet Protocol still retains its flat-topology essence. Beyond bitcoin, the largest and most successful application of P2P technologies is file sharing with Napster as the pioneer and bittorrent as the most recent evolution of the architecture.
|
||||
((("bitcoin network", id="ix_ch06-asciidoc0", range="startofrange")))((("bitcoin network","architecture of")))((("peer-to-peer networks")))Bitcoin is structured as a peer-to-peer network architecture on top of the Internet. The term peer-to-peer, or P2P, means that the computers that participate in the network are peers to each other, that they are all equal, that there are no "special" nodes, and that all nodes share the burden of providing network services. The network nodes interconnect in a mesh network with a "flat" topology. There is no server, no centralized service, and no hierarchy within the network. Nodes in a peer-to-peer network both provide and consume services at the same time with reciprocity acting as the incentive for participation. Peer-to-peer networks are inherently resilient, decentralized, and open. The preeminent example of a P2P network architecture was the early Internet itself, where nodes on the IP network were equal. Today's Internet architecture is more hierarchical, but the Internet Protocol still retains its flat-topology essence. Beyond bitcoin, the largest and most successful application of P2P technologies is file sharing with Napster as the pioneer and BitTorrent as the most recent evolution of the architecture.
|
||||
|
||||
Bitcoin's P2P network architecture is much more than a topology choice. Bitcoin is a peer-to-peer digital cash system by design, and the network architecture is both a reflection and a foundation of that core characteristic. Decentralization of control is a core design principle and that can only be achieved and maintained by a flat, de-centralized P2P consensus network.
|
||||
Bitcoin's P2P network architecture is much more than a topology choice. Bitcoin is a peer-to-peer digital cash system by design, and the network architecture is both a reflection and a foundation of that core characteristic. Decentralization of control is a core design principle and that can only be achieved and maintained by a flat, decentralized P2P consensus network.
|
||||
|
||||
((("bitcoin network","defined")))The term "bitcoin network" refers to the collection of nodes running the bitcoin P2P protocol. In addition to the bitcoin P2P protocol, there are other protocols such as((("Stratum (STM) mining protocol"))) Stratum, which are used for mining and lightweight or mobile wallets. These additional protocols are provided by gateway routing servers that access the bitcoin network using the bitcoin P2P protocol, and then extend that network to nodes running other protocols. For example, Stratum servers connect Stratum mining nodes via the Stratum protocol to the main bitcoin network and bridge the Stratum protocol to the bitcoin P2P protocol. We use the term "extended bitcoin network" to refer to the overall network that includes the bitcoin P2P protocol, pool mining protocols, the Stratum protocol, and any other related protocols connecting the components of the bitcoin system.
|
||||
((("bitcoin network","defined")))The term "bitcoin network" refers to the collection of nodes running the bitcoin P2P protocol. In addition to the bitcoin P2P protocol, there are other protocols such as((("Stratum (STM) mining protocol"))) Stratum, which are used for mining and lightweight or mobile wallets. These additional protocols are provided by gateway routing servers that access the bitcoin network using the bitcoin P2P protocol, and then extend that network to nodes running other protocols. For example, Stratum servers connect Stratum mining nodes via the Stratum protocol to the main bitcoin network and bridge the Stratum protocol to the bitcoin P2P protocol. We use the term "extended bitcoin network" to refer to the overall network that includes the bitcoin P2P protocol, pool-mining protocols, the Stratum protocol, and any other related protocols connecting the components of the bitcoin system.
|
||||
|
||||
=== Nodes Types and Roles
|
||||
|
||||
((("bitcoin network","nodes")))((("nodes","roles of")))((("nodes","types of")))Although nodes in the bitcoin P2P network are equal, they may take on different "roles" depending on the functionality they are supporting. A bitcoin node is a collection of functions: routing, the blockchain database, mining, and wallet services. A full node with all four of these functions is shown in <<full_node_reference>>.
|
||||
((("bitcoin network","nodes")))((("nodes","roles of")))((("nodes","types of")))Although nodes in the bitcoin P2P network are equal, they may take on different roles depending on the functionality they are supporting. A bitcoin node is a collection of functions: routing, the block chain database, mining, and wallet services. A full node with all four of these functions is shown in <<full_node_reference>>.
|
||||
|
||||
[[full_node_reference]]
|
||||
.A bitcoin network node with all four functions: wallet, miner, full blockchain database, and network routing
|
||||
.A bitcoin network node with all four functions: wallet, miner, full block chain database, and network routing
|
||||
image::images/msbt_0601.png["FullNodeReferenceClient_Small"]
|
||||
|
||||
All nodes include the routing function to participate in the network and may include other functionality. All nodes validate and propagate transactions and blocks, and discover and maintain connections to peers. In the full-node example in <<full_node_reference>>, the routing function is indicated by an orange circle named "Network Routing Node."
|
||||
All nodes include the routing function to participate in the network and might include other functionality. All nodes validate and propagate transactions and blocks, and discover and maintain connections to peers. In the full-node example in <<full_node_reference>>, the routing function is indicated by an orange circle named "Network Routing Node."
|
||||
|
||||
Some nodes, called full nodes, also maintain a complete and up-to-date copy of the blockchain. Full nodes can autonomously and authoritatively verify any transaction without external reference. Some nodes maintain only a subset of the blockchain and verify transactions using a method called((("Simplified Payment Verification (SPV) nodes","defined"))) _Simplified Payment Verification_, or SPV. These nodes are known as SPV or lightweight nodes. In the full-node example in the figure, the full-node blockchain database function is indicated by a blue circle named "Full Blockchain." SPV nodes are drawn without the blue circle, showing that they do not have a full copy of the blockchain.
|
||||
Some nodes, called full nodes, also maintain a complete and up-to-date copy of the block chain. Full nodes can autonomously and authoritatively verify any transaction without external reference. Some nodes maintain only a subset of the block chain and verify transactions using a method called((("simplified payment verification (SPV) nodes","defined"))) _simplified payment verification_, or SPV. These nodes are known as SPV or lightweight nodes. In the full-node example in the figure, the full-node block chain database function is indicated by a blue circle named "Full Blockchain." SPV nodes are drawn without the blue circle, showing that they do not have a full copy of the block chain.
|
||||
|
||||
Mining nodes compete to create new blocks by running specialized hardware to solve the Proof-Of-Work algorithm. Some mining nodes are also full nodes, maintaining a full copy of the blockchain, while others are lightweight nodes participating in pool mining and depending on a pool server to maintain a full node. The mining function is shown in the full node as a black circle named "Miner."
|
||||
Mining nodes compete to create new blocks by running specialized hardware to solve the proof-of-work algorithm. Some mining nodes are also full nodes, maintaining a full copy of the block chain, while others are lightweight nodes participating in pool mining and depending on a pool server to maintain a full node. The mining function is shown in the full node as a black circle named "Miner."
|
||||
|
||||
User wallets may be part of a full node, as is usually the case with desktop bitcoin clients. Increasingly many user wallets, especially those running on resource-constrained devices such as smartphones, are SPV nodes. The wallet function is shown in the figure as a green circle named "Wallet."
|
||||
User wallets might be part of a full node, as is usually the case with desktop bitcoin clients. Increasingly, many user wallets, especially those running on resource-constrained devices such as smartphones, are SPV nodes. The wallet function is shown in <<node_type_ledgend>> as a green circle named "Wallet."
|
||||
|
||||
In addition to the main node types on the bitcoin P2P protocol, there are servers and nodes running other protocols, such as specialized mining pool protocols and lightweight client access protocols.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user