mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2025-01-22 05:31:15 +00:00
Made changes to ch04.asciidoc
This commit is contained in:
parent
f9e1aeeef5
commit
6abc8aaba7
@ -814,13 +814,13 @@ Private keys must remain secret. The need for _confidentiality_ of the private k
|
||||
|
||||
BIP0038 proposes a common standard for encrypting private keys with a passphrase and encoding them with Base58Check so that they can be stored securely on backup media, transported securely between wallets, or in any other conditions where the key might be exposed. The standard for encryption uses the Advanced Encryption Standard (AES), a standard established by the National Institute of Standards and Technology (NIST) and used broadly in data encryption implementations for commercial and military applications.
|
||||
|
||||
A BIP0038 encryption scheme takes as input a bitcoin private key, usually encoded in the Wallet Import Format (WIF), as a Base58Check string with a prefix of "5". Additionally, the BIP0038 encryption scheme takes a passphrase—a long password—usually composed of several words or a complex string of alphanumeric characters. The result of the BIP0038 encryption scheme is a Base58Check-encoded encrypted private key that begins with the prefix +6P+. If you see a key that starts with +6P+, that means it is encrypted and requires a passphrase in order to convert (decrypt) it back into a WIF-formatted private key (prefix +5+) that can be used in any wallet. Many wallet applications now recognize BIP0038 encrypted private keys and will prompt the user for a passphrase to decrypt and import the key. Third party applications, such as the incredibly useful browser-based bitaddress.org (Wallet Details tab), can be used to decrypt BIP0038 keys.
|
||||
A BIP0038 encryption scheme takes as input a bitcoin private key, usually encoded in the Wallet Import Format (WIF), as a Base58Check string with a prefix of "5". Additionally, the BIP0038 encryption scheme takes a passphrase—a long password—usually composed of several words or a complex string of alphanumeric characters. The result of the BIP0038 encryption scheme is a Base58Check-encoded encrypted private key that begins with the prefix +6P+. If you see a key that starts with +6P+, that means it is encrypted and requires a passphrase in order to convert (decrypt) it back into a WIF-formatted private key (prefix +5+) that can be used in any wallet. Many wallet applications now recognize BIP0038 encrypted private keys and will prompt the user for a passphrase to decrypt and import the key. Third-party applications, such as the incredibly useful browser-based http://bitaddress.org/[bitaddress.org] (Wallet Details tab), can be used to decrypt BIP0038 keys.
|
||||
|
||||
The most common use case for BIP0038 encrypted keys is for paper wallets that can be used to backup private keys on a piece of paper. As long as the user selects a strong passphrase, a paper wallet with BIP0038 encrypted private keys is incredibly secure and a great way to create offline bitcoin storage (also known as "cold storage").
|
||||
The most common use case for BIP0038 encrypted keys is for paper wallets that can be used to back up private keys on a piece of paper. As long as the user selects a strong passphrase, a paper wallet with BIP0038 encrypted private keys is incredibly secure and a great way to create offline bitcoin storage (also known as "cold storage").
|
||||
|
||||
Test the following encrypted keys using bitaddress.org to see how you can get the decrypted key by entering the passphrase:
|
||||
Test the encrypted keys in Table 4-10 using bitaddress.org to see how you can get the decrypted key by entering the passphrase.
|
||||
|
||||
.Example of BIP0038 Encrypted Private Key
|
||||
.Example of BIP0038 encrypted private key
|
||||
|=======
|
||||
| Private Key (WIF) | 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
|
||||
| Passphrase | MyTestPassphrase
|
||||
@ -829,13 +829,13 @@ Test the following encrypted keys using bitaddress.org to see how you can get th
|
||||
|
||||
|
||||
[[p2sh_addresses]]
|
||||
==== Pay To Script Hash (P2SH) and Multi-Sig Addresses
|
||||
==== Pay-to-Script-Hash (P2SH) and Multi-Sig Addresses
|
||||
|
||||
As we know, traditional bitcoin addresses begin with the number “1” and are derived from the public key, which is derived from the private key. While anyone can send bitcoin to a “1” address, that bitcoin can only be spent by presenting the corresponding private key signature and public key hash.
|
||||
As we know, traditional bitcoin addresses begin with the number “1” and are derived from the public key, which is derived from the private key. Although anyone can send bitcoin to a “1” address, that bitcoin can only be spent by presenting the corresponding private key signature and public key hash.
|
||||
|
||||
Bitcoin addresses that begin with the number “3” are pay-to-script-hash (P2SH) addresses, sometimes erroneously called multi-signature or multi-sig addresses. They designate the beneficiary of a bitcoin transaction as the hash of a script, instead of the owner of a public key. The feature was introduced in January 2012 with Bitcoin Improvement Proposal 16 or BIP0016 (see <<bip0016>>) and is being widely adopted because it provides the opportunity to add functionality to the address itself. Unlike transactions that "send" funds to traditional “1” bitcoin addresses, also known as pay-to-public-key-hash (P2PKH), funds sent to “3” addresses require something more than the presentation of one public key hash and one private key signature as proof of ownership. The requirements are designated at the time the address is created, within the script, and all inputs to this address will be encumbered with the same requirements.
|
||||
Bitcoin addresses that begin with the number “3” are pay-to-script-hash (P2SH) addresses, sometimes erroneously called multi-signature or multi-sig addresses. They designate the beneficiary of a bitcoin transaction as the hash of a script, instead of the owner of a public key. The feature was introduced in January 2012 with Bitcoin Improvement Proposal 16, or BIP0016 (see <<bip0016>>) and is being widely adopted because it provides the opportunity to add functionality to the address itself. Unlike transactions that "send" funds to traditional “1” bitcoin addresses, also known as pay-to-public-key-hash (P2PKH), funds sent to “3” addresses require something more than the presentation of one public key hash and one private key signature as proof of ownership. The requirements are designated at the time the address is created, within the script, and all inputs to this address will be encumbered with the same requirements.
|
||||
|
||||
A pay-to-script-hash address is created from a transaction script, which defines who can spend a transaction output (for more detail, see <<p2sh>>). Encoding a pay-to-script hash address involves using the same double-hash function as used during creation of a bitcoin address, only applied on the script instead of the public key.
|
||||
A pay-to-script-hash address is created from a transaction script, which defines who can spend a transaction output (for more detail, see <<p2sh>>). Encoding a pay-to-script hash address involves using the same double-hash function as used during creation of a bitcoin address, only applied on the script instead of the public key:
|
||||
|
||||
----
|
||||
script hash = RIPEMD160(SHA256(script))
|
||||
@ -851,13 +851,13 @@ P2SH is not necessarily the same as a multi-signature standard transaction. A P2
|
||||
|
||||
===== Multi-signature addresses and P2SH
|
||||
|
||||
Currently, the most common implementation of the P2SH function is the multi-signature address script. As the name implies, the underlying script requires more than one signature to prove ownership and therefore spend funds. The bitcoin multi-signature feature is designed to require M signatures (also known as the “threshold”) from a total of N keys, known as an M-of-N multi-sig, where M is equal to or less than N. For example, Bob the coffee shop owner from <<ch01_intro_what_is_bitcoin>> could use a multi-signature address requiring 1-of-2 signatures from a key belonging to him and a key belonging to his spouse, ensuring either of them could sign to spend a transaction output locked to this address. This would be similar to a “joint account” as implemented in traditional banking where either spouse can spend with a single signature. Or Gopesh, the web designer paid by Bob to create a website might have a 2-of-3 multi-signature address for his business that ensures that no funds can be spent unless at least two of the business partners sign a transaction.
|
||||
Currently, the most common implementation of the P2SH function is the multi-signature address script. As the name implies, the underlying script requires more than one signature to prove ownership and therefore spend funds. The bitcoin multi-signature feature is designed to require M signatures (also known as the “threshold”) from a total of N keys, known as an M-of-N multi-sig, where M is equal to or less than N. For example, Bob the coffee shop owner from <<ch01_intro_what_is_bitcoin>> could use a multi-signature address requiring 1-of-2 signatures from a key belonging to him and a key belonging to his spouse, ensuring either of them could sign to spend a transaction output locked to this address. This would be similar to a “joint account” as implemented in traditional banking where either spouse can spend with a single signature. Or Gopesh, the web designer paid by Bob to create a website, might have a 2-of-3 multi-signature address for his business that ensures that no funds can be spent unless at least two of the business partners sign a transaction.
|
||||
|
||||
We will explore how to create transactions that spend funds from P2SH (and multi-signature) addresses in <<transactions>>.
|
||||
|
||||
==== Vanity Addresses
|
||||
|
||||
Vanity addresses are valid bitcoin addresses that contain human-readable messages, for example 1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 is a valid address that contains the letters forming the word "Love" as the first four Base-58 letters. Vanity addresses require generating and testing billions of candidate private keys, until one derives a bitcoin address with the desired pattern. While there are some optimizations in the vanity generation algorithm, the process essentially involves picking a private key at random, deriving the public key, deriving the bitcoin address and checking to see if it matches the desired vanity pattern, repeating billions of times until a match is found.
|
||||
Vanity addresses are valid bitcoin addresses that contain human-readable messages. For example, 1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 is a valid address that contains the letters forming the word "Love" as the first four Base-58 letters. Vanity addresses require generating and testing billions of candidate private keys, until one derives a bitcoin address with the desired pattern. Although there are some optimizations in the vanity generation algorithm, the process essentially involves picking a private key at random, deriving the public key, deriving the bitcoin address and checking to see if it matches the desired vanity pattern, repeating billions of times until a match is found.
|
||||
|
||||
Once a vanity address matching the desired pattern is found, the private key from which it was derived can be used by the owner to spend bitcoins in exactly the same way as any other address. Vanity addresses are no less or more secure than any other address. They depend on the same Elliptic Curve Cryptography (ECC) and Secure Hash Algorithm (SHA) as any other address. You can no easier find the private key of an address starting with a vanity pattern than you can any other address.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user