mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2024-12-27 00:48:09 +00:00
Edited ch10.asciidoc with Atlas code editor
This commit is contained in:
parent
9d922c1063
commit
66754009dc
@ -838,7 +838,7 @@ In the last two years, the ASIC mining chips have become increasingly denser, ap
|
||||
[[mining_pools]]
|
||||
==== Mining Pools
|
||||
|
||||
((("mining and consensus", "overview of", "mining pools", id="MACoverpool10")))((("mining pools", "benefits of")))In this highly competitive environment, individual miners working alone (also known as solo miners) don't stand a chance. The likelihood of them finding a block to offset their electricity and hardware costs is so low that it represents a gamble, like playing the lottery. Even the fastest consumer ASIC mining system cannot keep up with commercial systems that stack tens of thousands of these chips in giant warehouses near hydro-electric power stations. Miners now collaborate to form mining pools, pooling their hashing power and sharing the reward among thousands of participants. By participating in a pool, miners get a smaller share of the overall reward, but typically get rewarded every day, reducing uncertainty.
|
||||
((("mining pools", id="MACoverpool10")))((("mining pools", "benefits of")))In this highly competitive environment, individual miners working alone (also known as solo miners) don't stand a chance. The likelihood of them finding a block to offset their electricity and hardware costs is so low that it represents a gamble, like playing the lottery. Even the fastest consumer ASIC mining system cannot keep up with commercial systems that stack tens of thousands of these chips in giant warehouses near hydro-electric power stations. Miners now collaborate to form mining pools, pooling their hashing power and sharing the reward among thousands of participants. By participating in a pool, miners get a smaller share of the overall reward, but typically get rewarded every day, reducing uncertainty.
|
||||
|
||||
Let's look at a specific example. Assume a miner has purchased mining hardware with a combined hashing rate of 14,000 gigahashes per second (GH/s), or 14 TH/s. In 2017 this equipment costs approximately $2,500 USD. The hardware consumes 1375 watts (1.3 kW) of electricity when running, 32 kW-hours a day, at a cost of $1 to $2 per day on very low electricity rates. At current bitcoin difficulty, the miner will be able to solo mine a block approximately once every 4 years. If the miner does find a single block in that timeframe, the payout of 12.5 bitcoin, at approximately $1,000 per bitcoin, will result in a single payout of $12,500, which will not even cover the entire cost of the hardware and the electricity consumed over the time period, leaving a net loss of approximately $1,000. However, the chance of finding a block in a 4-year period depends on the miner's luck. He might find two blocks in 4 years and make a very large profit. Or he might not find a block for 5 years and suffer a bigger financial loss. Even worse, the difficulty of the bitcoin Proof-of-Work algorithm is likely to go up significantly over that period, at the current rate of growth of hashing power, meaning the miner has, at most, one year to break even before the hardware is effectively obsolete and must be replaced by more powerful mining hardware. If this miner participates in a mining pool, instead of waiting for a once-in-four-years $12,500 windfall, he will be able to earn approximately $50 to $60 per week. The regular payouts from a mining pool will help him amortize the cost of hardware and electricity over time without taking an enormous risk. The hardware will still be obsolete in one or two years and the risk is still high, but the revenue is at least regular and reliable over that period. Financially this only makes sense at very low electricity cost (less than 1 cent per kW) and only at very large scale.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user