1
0
mirror of https://github.com/bitcoinbook/bitcoinbook synced 2024-11-26 09:58:22 +00:00

Undoing some merges from #74 where the text changed to drastically from its original

This commit is contained in:
Minh T. Nguyen 2014-07-30 23:44:12 -07:00
parent 3b094972b2
commit 55ca4759ab

View File

@ -3,7 +3,7 @@
=== Transactions, Blocks, Mining and the Blockchain === Transactions, Blocks, Mining and the Blockchain
In the bitcoin system trust is de-centralized and achieved as an emergent property from the interactions of different participants in the bitcoin system. This is completely unlike traditional banking and payment systems, where trust is necessarily placed in one or more central trusted authorities. In this chapter we will examine bitcoin from a high level by tracking a single transaction through the bitcoin system and watch as it becomes "trusted" and accepted by the bitcoin mechanism of distributed consensus and is finally recorded on the blockchain, the distributed ledger of all transactions. The bitcoin system, unlike traditional banking and payment systems, is based on de-centralized trust. Instead of a central trusted authority, in bitcoin, trust is achieved as an emergent property from the interactions of different participants in the bitcoin system. In this chapter we will examine bitcoin from a high-level by tracking a single transaction through the bitcoin system and watch as it becomes "trusted" and accepted by the bitcoin mechanism of distributed consensus and is finally recorded on the blockchain, the distributed ledger of all transactions.
Each example below is based upon an actual transaction made on the bitcoin network, simulating the interactions between the users (Joe, Alice and Bob) by sending funds from one wallet to another. While tracking a transaction through the bitcoin network and blockchain, we will use a _blockchain explorer_ site to visualize each step. A blockchain explorer is a web application that operates as a bitcoin search engine, in that it allows you to search for addresses, transactions and blocks and see the relationships and flows between them. Each example below is based upon an actual transaction made on the bitcoin network, simulating the interactions between the users (Joe, Alice and Bob) by sending funds from one wallet to another. While tracking a transaction through the bitcoin network and blockchain, we will use a _blockchain explorer_ site to visualize each step. A blockchain explorer is a web application that operates as a bitcoin search engine, in that it allows you to search for addresses, transactions and blocks and see the relationships and flows between them.
@ -77,18 +77,13 @@ The bitcoin network can transact in fractional values, e.g. from millibitcoins (
In simple terms, a transaction tells the network that the owner of a number of bitcoins has authorized the transfer of some of those bitcoins to another owner. The new owner can now spend these bitcoins by creating another transaction that authorizes transfer to another owner, and so on, in a chain of ownership. In simple terms, a transaction tells the network that the owner of a number of bitcoins has authorized the transfer of some of those bitcoins to another owner. The new owner can now spend these bitcoins by creating another transaction that authorizes transfer to another owner, and so on, in a chain of ownership.
Transactions are like a journal entry record in a double-entry bookkeeping ledger. Each transaction contains: Transactions are like lines in a double-entry bookkeeping ledger. In simple terms, each transaction contains one or more "inputs", which are debits against a bitcoin account. On the other side of the transaction, there are one or more "outputs", which are credits added to a bitcoin account. The inputs and outputs (debits and credits) do not necessarily add up to the same amount. Instead, outputs add up to slightly less than inputs and the difference represents an implied "transaction fee", a small payment collected by the miner who includes the transaction in the ledger.
* a set of one or more "inputs", each with an input address and value
* a set of one or more "outputs", each with an output address and value
The inputs are to become the reductions to bitcoin addresses, and the outputs increases to other bitcoin addresses. The net inputs and net outputs must balance, with the exception of an optional implicit "transaction fee", a small output payment collected by the miner. Similar to debits and credits in an accounting journal entry, the net amount (input values less output values less fee) must be zero.
[[transaction-double-entry]] [[transaction-double-entry]]
.Transaction as Double-Entry Bookkeeping .Transaction as Double-Entry Bookkeeping
image::images/Transaction_Double_Entry.png["Transaction Double-Entry"] image::images/Transaction_Double_Entry.png["Transaction Double-Entry"]
The transaction also contains proof of ownership for each amount of bitcoin (inputs) whose value is transferred, in the form of a digital signature from the owner, which can be independently validated by anyone. In bitcoin terms, "spending" is signing the value (or a portion of the value) received from previous transaction for which you have the keys over to a new owner identified by a bitcoin address. The transaction also contains proof of ownership for each amount of bitcoin (inputs) whose value is transferred, in the form of a digital signature from the owner, which can be independently validated by anyone. In bitcoin terms, "spending" is signing the value of a previous transaction for which you have the keys over to a new owner identified by a bitcoin address.
[TIP] [TIP]
@ -216,7 +211,7 @@ The transaction is now propagated on the bitcoin network. It does not become par
The bitcoin system of trust is based on computation. Transactions are bundled into _blocks_, which require an enormous amount of computation to prove, but only a small amount of computation to verify as proven. This process is called _mining_ and serves two purposes in bitcoin: The bitcoin system of trust is based on computation. Transactions are bundled into _blocks_, which require an enormous amount of computation to prove, but only a small amount of computation to verify as proven. This process is called _mining_ and serves two purposes in bitcoin:
* Mining creates new bitcoins in each block, almost like a central bank printing new money. The protocol regulates the bitcoin creation rate over time: It sets a fixed amount of bitcoin created per block, gradually reduces the amount created in future blocks, and will ultimately produce a predictable amount of total bitcoin. * Mining creates new bitcoins in each block, almost like a central bank printing new money. The amount of bitcoin created per block is fixed and diminishes with time.
* Mining creates trust by ensuring that transactions are only confirmed if enough computational power was devoted to the block that contains them. More blocks mean more computation which means more trust. * Mining creates trust by ensuring that transactions are only confirmed if enough computational power was devoted to the block that contains them. More blocks mean more computation which means more trust.
A good way to describe mining is like a giant competitive game of sudoku that resets every time someone finds a solution and whose difficulty automatically adjusts so that it takes approximately 10 minutes to find a solution. Imagine a giant sudoku puzzle, several thousand rows and columns in size. If I show you a completed puzzle you can verify it quite quickly. If it is empty, however, it takes a lot of work to solve! The difficulty of the sudoku can be adjusted by changing its size (more or fewer rows and columns), but it can still be verified quite easily even if it is very large. The "puzzle" used in bitcoin is based on a cryptographic hash and exhibits similar characteristics: it is asymmetrically hard to solve but easy to verify, and its difficulty can be adjusted. A good way to describe mining is like a giant competitive game of sudoku that resets every time someone finds a solution and whose difficulty automatically adjusts so that it takes approximately 10 minutes to find a solution. Imagine a giant sudoku puzzle, several thousand rows and columns in size. If I show you a completed puzzle you can verify it quite quickly. If it is empty, however, it takes a lot of work to solve! The difficulty of the sudoku can be adjusted by changing its size (more or fewer rows and columns), but it can still be verified quite easily even if it is very large. The "puzzle" used in bitcoin is based on a cryptographic hash and exhibits similar characteristics: it is asymmetrically hard to solve but easy to verify, and its difficulty can be adjusted.
@ -227,7 +222,7 @@ Jing started mining in 2010 using a very fast desktop computer to find a suitabl
=== Mining transactions in blocks === Mining transactions in blocks
A transaction transmitted across the network is verified only when it becomes part of the global distributed ledger, the blockchain. Every ten minutes, miners generate a new block that contains all the transactions since the last block. New transactions are constantly flowing into the network from user wallets and other applications. As these are seen by the bitcoin network nodes, they get added to a temporary "pool" of unverified transactions maintained by each node. As miners build a new block, they add unverified transactions from this pool to a new block and then attempt to solve a very hard problem (aka Proof-of-Work) to prove the validity of that new block. The process of mining is explained in detail in <<mining>>. A transaction transmitted across the network is not verified until it becomes part of the global distributed ledger, the blockchain. Every ten minutes, miners generate a new block that contains all the transactions since the last block. New transactions are constantly flowing into the network from user wallets and other applications. As these are seen by the bitcoin network nodes, they get added to a temporary "pool" of unverified transactions maintained by each node. As miners build a new block, they add unverified transactions from this pool to a new block and then attempt to solve a very hard problem (aka Proof-of-Work) to prove the validity of that new block. The process of mining is explained in detail in <<mining>>.
Transactions are added to the new block, prioritized by the highest-fee transactions first and a few other criteria. Each miner starts the process of mining a new block of transactions as soon as they receive the previous block from the network, knowing they have lost that previous round of competition. They immediately create a new block, fill it with transactions and the fingerprint of the previous block and start calculating the Proof-of-Work for the new block. Each miner includes a special transaction in their block, one that pays their own bitcoin address a reward of newly created bitcoins (currently 25 BTC per block). If they find a solution that makes that block valid, they "win" this reward because their successful block is added to the global blockchain and the reward transaction they included becomes spendable. Jing, who participates in a mining pool, has set up his software to create new blocks that assign the reward to a pool address. From there, a share of the reward is distributed to Jing and other miners in proportion to the amount of work they contributed in the last round. Transactions are added to the new block, prioritized by the highest-fee transactions first and a few other criteria. Each miner starts the process of mining a new block of transactions as soon as they receive the previous block from the network, knowing they have lost that previous round of competition. They immediately create a new block, fill it with transactions and the fingerprint of the previous block and start calculating the Proof-of-Work for the new block. Each miner includes a special transaction in their block, one that pays their own bitcoin address a reward of newly created bitcoins (currently 25 BTC per block). If they find a solution that makes that block valid, they "win" this reward because their successful block is added to the global blockchain and the reward transaction they included becomes spendable. Jing, who participates in a mining pool, has set up his software to create new blocks that assign the reward to a pool address. From there, a share of the reward is distributed to Jing and other miners in proportion to the amount of work they contributed in the last round.