1
0
mirror of https://github.com/bitcoinbook/bitcoinbook synced 2024-12-23 07:08:13 +00:00

Fix issue #454: change adverbial “just like” → “just as”

This commit is contained in:
Reuben Thomas 2018-02-04 20:42:08 +00:00
parent d441f03e2a
commit 4e65d83bf5
3 changed files with 3 additions and 3 deletions

View File

@ -66,7 +66,7 @@ You may also notice a lot of strange and indecipherable fields and hexadecimal s
((("balances")))When we say that a user's wallet has "received" bitcoin, what we mean is that the wallet has detected a UTXO that can be spent with one of the keys controlled by that wallet. Thus, a user's bitcoin "balance" is the sum of all UTXO that user's wallet can spend and which may be scattered among hundreds of transactions and hundreds of blocks. The concept of a balance is created by the wallet application. The wallet calculates the user's balance by scanning the blockchain and aggregating the value of any UTXO the wallet can spend with the keys it controls. Most wallets maintain a database or use a database service to store a quick reference set of all the UTXO they can spend with the keys they control.
((("satoshis")))A transaction output can have an arbitrary (integer) value denominated as a multiple of satoshis. Just like dollars can be divided down to two decimal places as cents, bitcoin can be divided down to eight decimal places as satoshis. Although an output can have any arbitrary value, once created it is indivisible. This is an important characteristic of outputs that needs to be emphasized: outputs are _discrete_ and _indivisible_ units of value, denominated in integer satoshis. An unspent output can only be consumed in its entirety by a transaction.
((("satoshis")))A transaction output can have an arbitrary (integer) value denominated as a multiple of satoshis. Just as dollars can be divided down to two decimal places as cents, bitcoin can be divided down to eight decimal places as satoshis. Although an output can have any arbitrary value, once created it is indivisible. This is an important characteristic of outputs that needs to be emphasized: outputs are _discrete_ and _indivisible_ units of value, denominated in integer satoshis. An unspent output can only be consumed in its entirety by a transaction.
((("change, making")))If an UTXO is larger than the desired value of a transaction, it must still be consumed in its entirety and change must be generated in the transaction. In other words, if you have a UTXO worth 20 bitcoin and want to pay only 1 bitcoin, your transaction must consume the entire 20-bitcoin UTXO and produce two outputs: one paying 1 bitcoin to your desired recipient and another paying 19 bitcoin in change back to your wallet. As a result of the indivisible nature of transaction outputs, most bitcoin transactions will have to generate change.

View File

@ -7,7 +7,7 @@ In this chapter we will look at the features offered by the bitcoin blockchain,
=== Introduction
((("blockchain applications", "benefits of bitcoin system")))The bitcoin system was designed as a decentralized currency and payment system. However, most of its functionality is derived from much lower-level constructs that can be used for much broader applications. Bitcoin wasn't built with components such as accounts, users, balances, and payments. Instead, it uses a transactional scripting language with low-level cryptographic functions, as we saw in <<transactions>>. Just like the higher-level concepts of accounts, balances, and payments can be derived from these basic primitives, so can many other complex applications. Thus, the bitcoin blockchain can become an application platform offering trust services to applications, such as smart contracts, far surpassing the original purpose of digital currency and payments.
((("blockchain applications", "benefits of bitcoin system")))The bitcoin system was designed as a decentralized currency and payment system. However, most of its functionality is derived from much lower-level constructs that can be used for much broader applications. Bitcoin wasn't built with components such as accounts, users, balances, and payments. Instead, it uses a transactional scripting language with low-level cryptographic functions, as we saw in <<transactions>>. Just as the higher-level concepts of accounts, balances, and payments can be derived from these basic primitives, so can many other complex applications. Thus, the bitcoin blockchain can become an application platform offering trust services to applications, such as smart contracts, far surpassing the original purpose of digital currency and payments.
=== Building Blocks (Primitives)

View File

@ -4,7 +4,7 @@
This quick glossary contains many of the terms used in relation to bitcoin. These terms are used throughout the book, so bookmark this for a quick reference.
address::
A bitcoin address looks like +1DSrfJdB2AnWaFNgSbv3MZC2m74996JafV+. It consists of a string of letters and numbers. It's really an encoded base58check version of a public key 160-bit hash. Just like you ask others to send an email to your email address, you would ask others to send you bitcoin to one of your bitcoin addresses.
A bitcoin address looks like +1DSrfJdB2AnWaFNgSbv3MZC2m74996JafV+. It consists of a string of letters and numbers. It's really an encoded base58check version of a public key 160-bit hash. Just as you ask others to send an email to your email address, you would ask others to send you bitcoin to one of your bitcoin addresses.
bip::
Bitcoin Improvement Proposals. A set of proposals that members of the bitcoin community have submitted to improve bitcoin. For example, BIP-21 is a proposal to improve the bitcoin uniform resource identifier (URI) scheme.