1
0
mirror of https://github.com/bitcoinbook/bitcoinbook synced 2024-12-23 07:08:13 +00:00

Made changes to ch08.asciidoc

This commit is contained in:
drusselloctal@gmail.com 2014-10-31 05:58:03 -07:00
parent 3eb90c4640
commit 1de243ee10

View File

@ -573,9 +573,9 @@ Hashing Power: 127141 hashes per second
----
====
As you can see, increasing the difficulty by 1 bit causes an exponential increase in the time it takes to find a solution. If you think of the entire 256-bit number space, each time you constrain one more bit to zero, you decrease the search space by half. In the example above, it takes 84 million hash attempts to find a nonce that produces a hash with 26 leading bits as zero. Even at a speed of more than 120 thousand hashes per second, it still requires ten minutes on a consumer laptop to find this solution.
As you can see, increasing the difficulty by 1 bit causes an exponential increase in the time it takes to find a solution. If you think of the entire 256-bit number space, each time you constrain one more bit to zero, you decrease the search space by half. In <<pow_example_outputs>>, it takes 84 million hash attempts to find a nonce that produces a hash with 26 leading bits as zero. Even at a speed of more than 120 thousand hashes per second, it still requires 10 minutes on a consumer laptop to find this solution.
At the time of writing this, the network is attempting to find a block whose header hash is less than +000000000000004c296e6376db3a241271f43fd3f5de7ba18986e517a243baa7+. As you can see, there are a lot of zeroes at the beginning of that hash, meaning that the acceptable range of hashes is much smaller, hence more difficult to find a valid hash. It will take on average more than 150 quadrillion hash calculations per second for the network to discover the next block. That seems like an impossible task, but fortunately the network is bringing 100 Peta Hashes per second of processing power to bear, which will be able to find a block in about 10 minutes on average.
At the time of writing this, the network is attempting to find a block whose header hash is less than +000000000000004c296e6376db3a241271f43fd3f5de7ba18986e517a243baa7+. As you can see, there are a lot of zeros at the beginning of that hash, meaning that the acceptable range of hashes is much smaller, hence more difficult to find a valid hash. It will take on average more than 150 quadrillion hash calculations per second for the network to discover the next block. That seems like an impossible task, but fortunately the network is bringing 100 petahashes per second (PH/sec) of processing power to bear, which will be able to find a block in about 10 minutes on average.
[[difficulty_bits]]
==== Difficulty Representation