1
0
mirror of https://github.com/bitcoinbook/bitcoinbook synced 2024-12-23 15:18:11 +00:00

Edited ch02.asciidoc with Atlas code editor

This commit is contained in:
judymcconville@roadrunner.com 2017-05-03 08:35:24 -07:00
parent c95ac797cf
commit 1a9f723197

View File

@ -251,7 +251,7 @@ Jing started mining in 2010 using a very fast desktop computer to find a suitabl
=== Mining Transactions in Blocks
((("mining and consensus", "overview of", "mining transactions in blocks")))((("transactions", "overview of", "mining in blocks", id="Toverblock02")))((("blocks", "mining transactions in")))New transactions are constantly flowing into the network from user wallets and other applications. As these are seen by the bitcoin network nodes, they get added to a temporary pool of unverified transactions maintained by each node. As miners construct a new block, they add unverified transactions from this pool to the new block and then attempt to prove the validity of that new block, with the mining algorithm (Proof-of-Work). The process of mining is explained in detail in <<mining>>.
((("mining and consensus", "overview of", "mining transactions in blocks")))((("blocks", "mining transactions in")))New transactions are constantly flowing into the network from user wallets and other applications. As these are seen by the bitcoin network nodes, they get added to a temporary pool of unverified transactions maintained by each node. As miners construct a new block, they add unverified transactions from this pool to the new block and then attempt to prove the validity of that new block, with the mining algorithm (Proof-of-Work). The process of mining is explained in detail in <<mining>>.
Transactions are added to the new block, prioritized by the highest-fee transactions first and a few other criteria. Each miner starts the process of mining a new block of transactions as soon as he receives the previous block from the network, knowing he has lost that previous round of competition. He immediately creates a new block, fills it with transactions and the fingerprint of the previous block, and starts calculating the Proof-of-Work for the new block. Each miner includes a special transaction in his block, one that pays his own bitcoin address the block reward (currently 12.5 newly created bitcoin) plus the sum of transaction fees from all the transactions included in the block. If he finds a solution that makes that block valid, he "wins" this reward because his successful block is added to the global blockchain and the reward transaction he included becomes spendable. Jing, who participates in a mining pool, has set up his software to create new blocks that assign the reward to a pool address. From there, a share of the reward is distributed to Jing and other miners in proportion to the amount of work they contributed in the last round.
@ -266,7 +266,7 @@ You can see the block that includes https://blockchain.info/block-height/277316[
Approximately 19 minutes later, a new block, #277317, is mined by another miner. Because this new block is built on top of block #277316 that contained Alice's transaction, it added even more computation to the blockchain, thereby strengthening the trust in those transactions. Each block mined on top of the one containing the transaction counts as an additional confirmation for Alice's transaction. As the blocks pile on top of each other, it becomes exponentially harder to reverse the transaction, thereby making it more and more trusted by the network.
((("genesis block")))((("blocks", "genesis block")))In the diagram in <<block-alice1>> we can see block #277316, which contains Alice's transaction. Below it are 277,316 blocks (including block #0), linked to each other in a chain of blocks (blockchain) all the way back to block #0, known as the _genesis block_. Over time, as the "height" in blocks increases, so does the computation difficulty for each block and the chain as a whole. The blocks mined after the one that contains Alice's transaction act as further assurance, as they pile on more computation in a longer and longer chain. By convention, any block with more than six confirmations is considered irrevocable, because it would require an immense amount of computation to invalidate and recalculate six blocks. We will examine the process of mining and the way it builds trust in more detail in <<bitcoin_network_ch08>>.((("", startref="BToverview02")))((("", startref="Toverblock02")))
((("genesis block")))((("blocks", "genesis block")))In the diagram in <<block-alice1>> we can see block #277316, which contains Alice's transaction. Below it are 277,316 blocks (including block #0), linked to each other in a chain of blocks (blockchain) all the way back to block #0, known as the _genesis block_. Over time, as the "height" in blocks increases, so does the computation difficulty for each block and the chain as a whole. The blocks mined after the one that contains Alice's transaction act as further assurance, as they pile on more computation in a longer and longer chain. By convention, any block with more than six confirmations is considered irrevocable, because it would require an immense amount of computation to invalidate and recalculate six blocks. We will examine the process of mining and the way it builds trust in more detail in <<bitcoin_network_ch08>>.((("", startref="BToverview02")))
[[block-alice1]]
.Alice's transaction included in block #277316