mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2024-11-23 08:38:10 +00:00
1.158e77 should have been 1.1578e77 #481
This commit is contained in:
parent
81f6c7e216
commit
177c2e6afe
@ -60,7 +60,7 @@ The bitcoin private key is just a number. You can pick your private keys randoml
|
|||||||
|
|
||||||
The first and most important step in generating keys is to find a secure source of entropy, or randomness. Creating a bitcoin key is essentially the same as "Pick a number between 1 and 2^256^." The exact method you use to pick that number does not matter as long as it is not predictable or repeatable. Bitcoin software uses the underlying operating system's random number generators to produce 256 bits of entropy (randomness). Usually, the OS random number generator is initialized by a human source of randomness, which is why you may be asked to wiggle your mouse around for a few seconds.
|
The first and most important step in generating keys is to find a secure source of entropy, or randomness. Creating a bitcoin key is essentially the same as "Pick a number between 1 and 2^256^." The exact method you use to pick that number does not matter as long as it is not predictable or repeatable. Bitcoin software uses the underlying operating system's random number generators to produce 256 bits of entropy (randomness). Usually, the OS random number generator is initialized by a human source of randomness, which is why you may be asked to wiggle your mouse around for a few seconds.
|
||||||
|
|
||||||
More precisely, the private key can be any number between +0+ and +n - 1+ inclusive, where n is a constant (n = 1.158 * 10^77^, slightly less than 2^256^) defined as the order of the elliptic curve used in bitcoin (see <<elliptic_curve>>). To create such a key, we randomly pick a 256-bit number and check that it is less than +n+. In programming terms, this is usually achieved by feeding a larger string of random bits, collected from a cryptographically secure source of randomness, into the SHA256 hash algorithm, which will conveniently produce a 256-bit number. If the result is less than +n+, we have a suitable private key. Otherwise, we simply try again with another random number.
|
More precisely, the private key can be any number between +0+ and +n - 1+ inclusive, where n is a constant (n = 1.1578 * 10^77^, slightly less than 2^256^) defined as the order of the elliptic curve used in bitcoin (see <<elliptic_curve>>). To create such a key, we randomly pick a 256-bit number and check that it is less than +n+. In programming terms, this is usually achieved by feeding a larger string of random bits, collected from a cryptographically secure source of randomness, into the SHA256 hash algorithm, which will conveniently produce a 256-bit number. If the result is less than +n+, we have a suitable private key. Otherwise, we simply try again with another random number.
|
||||||
|
|
||||||
[WARNING]
|
[WARNING]
|
||||||
====
|
====
|
||||||
|
Loading…
Reference in New Issue
Block a user