mirror of
https://github.com/bitcoinbook/bitcoinbook
synced 2025-02-22 12:32:06 +00:00
Made changes to ch05.asciidoc
This commit is contained in:
parent
db8c5e1071
commit
10bc888797
@ -245,16 +245,16 @@ Eugenia's wallet application will calculate the appropriate fee by measuring the
|
||||
|
||||
When a chain of transactions is transmitted across the network, they don't always arrive in the same order. Sometimes, the child might arrive before the parent. In that case, the nodes that see a child first can see that it references a parent transaction that is not yet known. Rather than reject the child, they put it in a temporary pool to await the arrival of its parent and propagate it to every other node. The pool of transactions without parents is known as the((("orphan transaction pool"))) _orphan transaction pool_. Once the parent arrives, any orphans that reference the UTXO created by the parent are released from the pool, revalidated recursively, and then the entire chain of transactions can be included in the transaction pool, ready to be mined in a block. Transaction chains can be arbitrarily long, with any number of generations transmitted simultaneously. The mechanism of holding orphans in the orphan pool ensures that otherwise valid transactions will not be rejected just because their parent has been delayed and that eventually the chain they belong to is reconstructed in the correct order, regardless of the order of arrival.
|
||||
|
||||
There is a limit to the number of orphan transactions stored in memory, to prevent a Denial-of-Service attack against bitcoin nodes. The limit is defined as((("MAX_ORPHAN_TRANSACTIONS constant"))) +MAX_ORPHAN_TRANSACTIONS+ in the source code of the bitcoin reference client. If the number of orphan transactions in the pool exceeds +MAX_ORPHAN_TRANSACTIONS+, one or more randomly selected orphan transactions are evicted from the pool, until the pool size is back within limits.
|
||||
There is a limit to the number of orphan transactions stored in memory, to prevent a denial-of-service attack against bitcoin nodes. The limit is defined as((("MAX_ORPHAN_TRANSACTIONS constant"))) +MAX_ORPHAN_TRANSACTIONS+ in the source code of the bitcoin reference client. If the number of orphan transactions in the pool exceeds +MAX_ORPHAN_TRANSACTIONS+, one or more randomly selected orphan transactions are evicted from the pool, until the pool size is back within limits.
|
||||
|
||||
[[tx_script]]
|
||||
=== Transaction Scripts and Script Language
|
||||
|
||||
((("scripts", id="ix_ch05-asciidoc9", range="startofrange")))((("transactions","script language for", id="ix_ch05-asciidoc10", range="startofrange")))((("transactions","validation", id="ix_ch05-asciidoc11", range="startofrange")))((("validation (transaction)", id="ix_ch05-asciidoc12", range="startofrange")))Bitcoin clients validate transactions by executing a script, written in a Forth-like scripting language. Both the locking script (encumbrance) placed on a UTXO and the unlocking script that usually contains a signature are written in this scripting language. When a transaction is validated, the unlocking script in each input is executed alongside the corresponding locking script to see if it satisfies the spending condition.
|
||||
|
||||
Today most transactions processed through the bitcoin network have the form "Alice pays Bob" and are based on the same script called a Pay-to-Public-Key-Hash script. However, the use of scripts to lock outputs and unlock inputs means that through use of the programming language, transactions can contain an infinite number of conditions. Bitcoin transactions are not limited to the "Alice pays Bob" form and pattern.
|
||||
Today, most transactions processed through the bitcoin network have the form "Alice pays Bob" and are based on the same script called a Pay-to-Public-Key-Hash script. However, the use of scripts to lock outputs and unlock inputs means that through use of the programming language, transactions can contain an infinite number of conditions. Bitcoin transactions are not limited to the "Alice pays Bob" form and pattern.
|
||||
|
||||
This is only the tip of the iceberg of possibilities that can be expressed with this scripting language. In this section we will demonstrate the components of the bitcoin transaction scripting language and show how it can be used to express complex conditions for spending and how those conditions can be satisfied by unlocking scripts.
|
||||
This is only the tip of the iceberg of possibilities that can be expressed with this scripting language. In this section, we will demonstrate the components of the bitcoin transaction scripting language and show how it can be used to express complex conditions for spending and how those conditions can be satisfied by unlocking scripts.
|
||||
|
||||
[TIP]
|
||||
====
|
||||
@ -267,13 +267,13 @@ Bitcoin transaction validation is not based on a static pattern, but instead is
|
||||
|
||||
((("locking scripts","transaction validation and")))((("validation (transaction)","locking scripts")))A locking script is an encumbrance placed on an output, and it specifies the conditions that must be met to spend the output in the future. Historically, the locking script was called a _scriptPubKey_, because it usually contained a public key or bitcoin address. In this book we refer to it as a "locking script" to acknowledge the much broader range of possibilities of this scripting technology. In most bitcoin applications, what we refer to as a locking script will appear in the source code as +scriptPubKey+.
|
||||
|
||||
((("unlocking scripts","transaction validation and")))An unlocking script is a script that "solves," or satisfies, the conditions placed on an output by a locking script and allows the output to be spent. Unlocking scripts are part of every transaction input, and most of the time they contain a digital signature produced by the user's wallet from his or her private key. Historically, the unlocking script is called _scriptSig_, because it usually contained a digital signature. In this book we refer to it as an "unlocking script" to acknowledge the much broader range of locking script requirements, because not all unlocking scripts must contain signatures. As mentioned previously, in most bitcoin applications the source code will refer to the unlocking script as +scriptSig+.
|
||||
((("unlocking scripts","transaction validation and")))An unlocking script is a script that "solves," or satisfies, the conditions placed on an output by a locking script and allows the output to be spent. Unlocking scripts are part of every transaction input, and most of the time they contain a digital signature produced by the user's wallet from his or her private key. Historically, the unlocking script is called _scriptSig_, because it usually contained a digital signature. In most bitcoin applications, the source code refers to the unlocking script as +scriptSig+. In this book, we refer to it as an "unlocking script" to acknowledge the much broader range of locking script requirements, because not all unlocking scripts must contain signatures.
|
||||
|
||||
Every bitcoin client will validate transactions by executing the locking and unlocking scripts together. For each input in the transaction, the validation software will first retrieve the UTXO referenced by the input. That UTXO contains a locking script defining the conditions required to spend it. The validation software will then take the unlocking script contained in the input that is attempting to spend this UTXO and execute the two scripts.
|
||||
|
||||
In the original bitcoin client, the unlocking and locking scripts were concatenated and executed in sequence. For security reasons, this was changed in 2010, because of a vulnerability that allowed a malformed unlocking script to push data onto the stack and corrupt the locking script. In the current implementation, the scripts are executed separately with the stack transferred between the two executions, as described next.
|
||||
|
||||
First, the unlocking script is executed, using the stack execution engine. If the unlocking script executed without errors (e.g., it has no "dangling" operators left over), the main stack (not the alternate stack) is copied and the locking script is executed. If the result of executing the locking script with the stack data copied from the unlocking script is "TRUE," the unlocking script has succeeded in resolving the conditions imposed by the locking script and, therefore, the input is a valid authorization to spend the UTXO. If any result other than "TRUE" remains after execution of the combined script, the input is invalid because it has failed to satisfy the spending conditions placed on the UTXO. Note that the UTXO is permanently recorded in the blockchain, and therefore is invariable and is unaffected by failed attempts to spend it by reference in a new transaction. Only a valid transaction that correctly satisfies the conditions of the UTXO results in the UTXO being marked as "spent" and removed from the set of available (unspent) UTXO.
|
||||
First, the unlocking script is executed, using the stack execution engine. If the unlocking script executed without errors (e.g., it has no "dangling" operators left over), the main stack (not the alternate stack) is copied and the locking script is executed. If the result of executing the locking script with the stack data copied from the unlocking script is "TRUE," the unlocking script has succeeded in resolving the conditions imposed by the locking script and, therefore, the input is a valid authorization to spend the UTXO. If any result other than "TRUE" remains after execution of the combined script, the input is invalid because it has failed to satisfy the spending conditions placed on the UTXO. Note that the UTXO is permanently recorded in the block chain, and therefore is invariable and is unaffected by failed attempts to spend it by reference in a new transaction. Only a valid transaction that correctly satisfies the conditions of the UTXO results in the UTXO being marked as "spent" and removed from the set of available (unspent) UTXO.
|
||||
|
||||
<<scriptSig_and_scriptPubKey>> is an example of the unlocking and locking scripts for the most common type of bitcoin transaction (a payment to a public key hash), showing the combined script resulting from the concatenation of the unlocking and locking scripts prior to script validation.
|
||||
|
||||
@ -285,11 +285,11 @@ image::images/msbt_0501.png["scriptSig_and_scriptPubKey"]
|
||||
[[tx_script_language]]
|
||||
==== Scripting Language
|
||||
|
||||
((("Script language", id="ix_ch05-asciidoc13", range="startofrange")))((("scripts","language for", id="ix_ch05-asciidoc14", range="startofrange")))The bitcoin transaction script language, also confusingly, _Script_, is a Forth-like reverse-polish notation stack-based execution language. If that sounds like gibberish, you probably haven't studied 1960's programming languages. Script is a very simple, lightweight language that was designed to be limited in scope and executable on a range of hardware, perhaps as simple as an embedded device, like a handheld calculator. It requires minimal processing and cannot do many of the fancy things modern programming languages can do. In the case of programmable money, that is a deliberate security feature.
|
||||
((("Script language", id="ix_ch05-asciidoc13", range="startofrange")))((("scripts","language for", id="ix_ch05-asciidoc14", range="startofrange")))The bitcoin transaction script language, called _Script_, is a Forth-like reverse-polish notation stack-based execution language. If that sounds like gibberish, you probably haven't studied 1960's programming languages. Script is a very simple language that was designed to be limited in scope and executable on a range of hardware, perhaps as simple as an embedded device, such as a handheld calculator. It requires minimal processing and cannot do many of the fancy things modern programming languages can do. In the case of programmable money, that is a deliberate security feature.
|
||||
|
||||
Bitcoin's scripting language is called a stack-based language because it uses a data structure called a((("stack, defined"))) _stack_. A stack is a very simple data structure, which can be visualized as a stack of cards. A stack allows two operations: push and pop. Push adds an item on top of the stack. Pop removes the top item from the stack.
|
||||
|
||||
The scripting language executes the script by processing each item from left to right. Numbers (data constants) are pushed onto the stack. Operators push or pop one or more parameters from the stack, act on them, and may push a result onto the stack. For example, +OP_ADD+ will pop two items from the stack, add them, and push the resulting sum onto the stack.
|
||||
The scripting language executes the script by processing each item from left to right. Numbers (data constants) are pushed onto the stack. Operators push or pop one or more parameters from the stack, act on them, and might push a result onto the stack. For example, +OP_ADD+ will pop two items from the stack, add them, and push the resulting sum onto the stack.
|
||||
|
||||
Conditional operators evaluate a condition producing a boolean result of TRUE or FALSE. For example, +OP_EQUAL+ pops two items from the stack and pushes TRUE (TRUE is represented by the number 1) if they are equal or FALSE (represented by zero) if they are not equal. Bitcoin transaction scripts usually contain a conditional operator, so that they can produce the TRUE result that signifies a valid transaction.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user