Mining is the process by which new bitcoin is added to the money supply. Mining also serves to secure the bitcoin system against fraudulent transactions or transactions spending the same amount of bitcoin more than once, known as a double-spend. Miners act as a decentralized clearinghouse, validating new transactions and recording them on the global ledger. A new block, containing transactions which occurred since the last block, is "mined" every 10 minutes thereby adding those transactions to the blockchain. Transactions that become part of a block and added to the blockchain are considered "confirmed", which allows the new owners of bitcoin to spend the bitcoin they received in those transactions. Miners receive two types of reward for mining: new coins created with each new block and transaction fees from all the transactions included in the block. To earn this reward, the miners compete to solve a difficult mathematical problem based on a cryptographic hash algorithm. The solution to the problem, called the Proof-of-Work, is included in the new block and acts as proof that the miner expended significant computing effort. The competition to solve the Proof-of-Work algorithm to earn reward and the right to record transactions on the blockchain is the basis for bitcoin's security model.
The process of new coin generation is called mining, because the reward is designed to simulate diminishing returns, just like mining for precious metals. Bitcoin's money supply is created through mining, just like a central bank issues new money by printing bank notes. The amount of newly created bitcoin a miner can add to a block decreases approximately every four years (or precisely every 210,000 blocks). It started at 50 bitcoin per block in January of 2009 and halved to 25 bitcoin per block in November of 2012. It will halve again to 12.5 bitcoin per block sometime in 2016. Based on this formula, bitcoin mining rewards decrease exponentially until approximately the year 2140 when all bitcoin (20.99 million) will have been issued. After 2140, no new bitcoins are issued.
Bitcoin miners also earn fees from transactions. Every transaction may include a transaction fee, in the form of a surplus of bitcoin between the transaction's inputs and outputs. The winning bitcoin miner gets to "keep the change" on the transactions included in the winning block. Today the fees represent 0.5% or less of a bitcoin miner's income, the vast majority coming from the newly minted bitcoins. However, as the reward decreases over time and the number of transactions per block increases, a greater proportion of bitcoin mining earnings will come from fees. After 2140 all bitcoin miner earnings will be in the form of transaction fees.
The word "mining" is somewhat misleading. By evoking the extraction of precious metals, it focuses our attention on the reward for mining, the new bitcoins in each block. While mining is incentivized by this reward, the primary purpose of mining is not the reward or the generation of new coins. If you view mining only as the process by which coins are created you are mistaking the means (incentives) as a goal of the process. Mining is the main process of the de-centralized clearinghouse, by which transactions are validated and cleared. Mining secures the bitcoin system and enables the emergence of network-wide consensus without a central authority. Mining is the invention that makes bitcoin special, a de-centralized security mechanism that is the basis for peer-to-peer digital cash. The reward of newly minted coins and transaction fees is an incentive scheme that aligns the actions of miners with the security of the network, while simultaneously implementing the monetary supply.
In this chapter, we will first examine mining as a monetary supply mechanism and then look at the most important function of mining, the de-centralized emergent consensus mechanism that underpins bitcoin's security.
Bitcoins are "minted" during the creation of each block at a fixed and diminishing rate. Each block, generated on average every 10 minutes, contains a entirely new bitcoins, created ex nihilo (from nothing). Every 210,000 blocks or approximately every four years the currency issuance rate is decreased by 50%. For the first four years of operation of the network, each block contained 50 new bitcoin. In November of 2012, the new bitcoin issuance rate was decreased to 25 bitcoin per block and it will decrease again to 12.5 bitcoin at block 420,000, which will be mined sometime in 2016. The rate of new coins decreases like this exponentially over 64 "halvings", until block 13,230,000 (mined in year 2137, approximately) when it reaches the minimum currency unit of 1 satoshi. Finally, after 13.44 million blocks, in approximately 2140, all 2,099,999,997,690,000 satoshis, or almost 21 million bitcoin will be issued. Thereafter, blocks will contain no new bitcoin and miners will be rewarded solely through the transaction fees.
The finite and diminishing issuance creates a fixed monetary supply that resists inflation. Unlike a fiat currency which can be printed in infinite numbers by a central bank, bitcoin can never be inflated by printing.
The most important and debated consequence of a fixed and diminishing monetary issuance is that the currency will tend to be inherently _deflationary_. Deflation is the phenomenon of appreciation of value due to a mismatch in supply and demand that drives up the value (and exchange rate) of a currency. The opposite of inflation, price deflation means that the money has more purchasing power over time.
Many economists argue that a deflationary economy is a disaster that should be avoided at all costs. That is because in a period of rapid deflation people will tend to hoard money instead of spending it, hoping that prices will fall. Such a phenomenon unfolded during Japan's "Lost Decade", when a complete collapse of demand pushed the currency into a deflationary spiral.
Bitcoin experts argue that deflation is not bad *per se*. Rather, deflation is associated with a collapse in demand because that is the only example of deflation we have to study. In a fiat currency with the possibility of unlimited printing, it is very difficult to enter a deflationary spiral unless there is a complete collapse in demand and an unwillingness to print money. Deflation in bitcoin is not caused by a collapse in demand, but by a predictably constrained supply.
In practice, it has become evident that the hoarding instinct caused by a deflationary currency can be overcome by discounting from vendors, until the discount overcomes the hoarding instinct of the buyer. Since the seller is also motivated to hoard, the discount becomes the equilibrium price at which the two hoarding instincts are matched. With discounts of 30% on the bitcoin price, most bitcoin retailers are not experiencing difficulty overcoming the hoarding instinct and generating revenue. It remains to be seen whether the deflationary aspect of the currency is really a problem when it is not driven by rapid economic retraction.
In the previous chapter we looked at the blockchain, the global public ledger (list) of all transactions, which everyone in the bitcoin network accepts as the authoritative record of ownership.
But how can everyone in the network agree on a single universal "truth" about who owns what, without having to trust anyone? All traditional payment systems depend on a trust model that has a central authority providing a clearinghouse service, basically verifying and clearing all transactions. Bitcoin has no central authority, yet somehow every node has a complete copy of a public ledger that it can trust as the authoritative record. The blockchain is not created by a central authority, but is assembled independently by every node in the network. Somehow, every node in the network, acting on information transmitted across insecure network connections can arrive at the same conclusion and assemble a copy of the same public ledger as everyone else. This chapter examines the process by which the bitcoin network achieves global consensus without central authority.
Satoshi Nakamoto's main invention is the decentralized mechanism for _emergent consensus_. Emergent, because consensus is not achieved explicitly - there is no election or fixed moment when consensus occurs. Instead, consensus is an emergent artifact of the asynchronous interaction of thousands of independent nodes, all following simple rules. All the properties of bitcoin, including currency, transactions, payments and the security model that does not depend central authority or trust derive from this invention.
* Independent verification of each transaction, by every full node, based on a comprehensive list of criteria
* Independent aggregation of those transactions into new blocks by mining nodes, coupled with demonstrated computation through a Proof-of-Work algorithm
In the next few sections we will examine these processes and how they interact to create the emergent property of network-wide consensus that allows any bitcoin node to assemble its own copy of the authoritative, trusted, public, global ledger.
In a previous chapter we saw how wallet software creates transactions by collecting UTXO, providing the appropriate unlocking scripts and then constructing new outputs assigned to a new owner. The resulting transaction is then sent to the neighboring nodes in the bitcoin network so that it may be propagated across the entire bitcoin network.
However, before forwarding transactions to its neighbors, every bitcoin node that receives a transaction will first verify the transaction. This ensures that only valid transactions are propagated across the network, while invalid transactions are discarded at the first node that encounters them.
Each node verifies every transaction against a long checklist of criteria:
* Check the syntactic correctness of the transaction's data structure
* Make sure neither lists of inputs or outputs are empty
* The transaction size in bytes is less than MAX_BLOCK_SIZE
* Each output value, as well as the total, must be within the allowed range of values (less than 21m coins, more than 0)
* Check none of the inputs have hash=0, N=-1 (coinbase transactions should not be relayed)
* Check that nLockTime is less than or equal to INT_MAX
* Check that the transaction size in bytes is greater than or equal to 100
* Check the number of signature operations contained in the transaction is less than the signature operation limit
* Reject "nonstandard" transactions: unlocking script (scriptSig) doing anything other than pushing numbers on the stack, or the locking script (scriptPubkey) not matching isStandard forms
* Check for a matching transaction in the pool, or in a block in the main branch, if so reject this transaction
* For each input, if the referenced output exists in any other transaction in the pool, reject this transaction.
* For each input, look in the main branch and the transaction pool to find the referenced output transaction. If the output transaction is missing for any input, this will be an orphan transaction. Add to the orphan transactions, if a matching transaction is not already in the pool.
* For each input, if the referenced output transaction is a coinbase output, it must have at least COINBASE_MATURITY (100) confirmations; else reject this transaction
* For each input, if the referenced output does not exist (e.g. never existed or has already been spent), reject this transaction
* Using the referenced output transactions to get input values, check that each input value, as well as the sum, are in the allowed range of values (less than 21m coins, more than 0)
* Reject if the sum of input values < sum of output values
* Reject if transaction fee would be too low to get into an empty block
* Verify the unlocking scripts for each input against the corresponding output locking scripts
These conditions can be seen in detail in the functions +AcceptToMemoryPool+, +CheckTransaction+ and +CheckInputs+ in the bitcoin reference client. Note that the conditions change over time, to address new types of Denial-of-Service attacks or sometimes to relax the rules so as to include more types of transactions.
By independently verifying each transaction as it is received and before propagating it, every node builds a pool of valid new transactions (the transaction pool), roughly in the same order.
Some of the nodes on the bitcoin network are specialized nodes called _miners_. In Chapter 1 we introduced Jing, a computer engineering student in Shanghai China, who is a bitcoin miner. Jing earns bitcoin by running a "mining rig" which is a specialized computer-hardware system designed to mine bitcoins. Jing's specialized mining hardware is connected to a server running a full bitcoin node. Unlike Jing, some miners mine without a full node as we will see in <<mining pools>>. Like every other full node, Jing's node receives and propagates unconfirmed transactions on the bitcoin network. Jing's node, however, also aggregates these transactions into new blocks.
Jing's node is listening for new blocks, propagated on the bitcoin network, as do all nodes. However, the arrival of a new block has special significance for a mining node. The competition among miners effectively ends with the propagation of a new block which acts as an announcement of a winner. To a miner, receiving a new block means someone else won the competition and they lost. However, the end of one round of a competition is also the beginning of the next round. The new block is not just a checkered flag, marking the end of the race, it is also the starting pistol starting the race for the next block.
After validating transactions, a bitcoin node will add them to the _memory pool_, or _transaction pool_, where transactions await until they can be included (mined) into a block. Jing's node collects, validates and relays new transactions just like any other node. Unlike other nodes, however, Jing's node will then aggregate these transactions into a _candidate block_.
Let's follow the blocks that were created during the time Alice bought a cup of coffee from Bob's Cafe (see <<cup_of_coffee>>). Alice's transaction was included in block 277,316. For the purpose of demonstrating the concepts in this chapter let's assume that block was mined by Jing's mining system and follow Alice's transaction as it becomes part of this new block.
Jing's mining node maintains a local copy of the blockchain, the list of all blocks created since the beginning of the bitcoin system in 2009. By the time Alice buys the cup of coffee, Jing's node has assembled a chain of 277,314 blocks. Jing's node is listening for transactions, trying to mine a new block and also listening for blocks discovered by other nodes. As Jing's node is mining, it receives block 277,315 through the bitcoin network. The arrival of this block signifies the end of the competition for block 277,315 and the beginning of the competition to create block 277,316.
During the previous 10 minutes, while Jing's node was searching for a solution to block 277,315, it was also collecting transactions in preparation for the next block. By now it has collected a few hundred transactions in the memory pool. Upon receiving block 277,315 and validating it, Jing's node will also check all the transactions in the memory pool and remove any that were included in block 277,315. Whatever transaction remain in the memory pool are unconfirmed and are waiting to be recorded in a new block.
Jing's node immediately constructs a new empty block, a candidate for block 277,316. This block is called a candidate block because it is not yet a valid block, as it does not contain a valid proof-of-work. The block becomes valid only if the miner succeeds in finding a solution to the Proof-of-Work algorithm.
To construct the candidate block Jing's bitcoin node selects transactions from the memory pool, by applying a priority metric to each transaction and adding the highest priority transactions first. Transactions are prioritized based on the "age" of the UTXO that is being spent in their inputs, allowing for old and high-value inputs to be prioritized over newer and smaller inputs. Prioritized transactions can be sent without any fees, if there is enough space in the block.
The priority of a transaction is calculated as the sum of the value and age of the inputs divided by the total size of the transaction:
----
Priority = Sum (Value of input * Input Age) / Transaction Size
----
In the equation above, the value of an input is measured in the base unit, satoshis (1/100m of a bitcoin). The age of a UTXO is the number of blocks that have elapsed since the UTXO was recorded on the blockchain, measuring how many blocks "deep" into the blockchain it is. The size of the transaction is measured in bytes.
For a transaction to be considered "high priority" its priority must be greater than 57,600,000, which corresponds to one bitcoin (100m satoshis), aged one day (144 blocks) in a transaction of 250 bytes total size.
The first 50 kilobytes of transaction space in a block are set aside for high priority transactions. Jing's node will fill the first 50 kilobytes, prioritizing the highest priority transactions first, regardless of fee. This allows high-priority transactions to be processed even if they carry zero fees.
Jing's mining node then fills the rest of the block up to the maximum block size (MAX_BLOCK_SIZE in the code), with transactions that carry at least the minimum fee, prioritizing those with the highest fee per kilobyte of transaction.
If there is any space remaining in the block, Jing's mining node may choose to fill it with no-fee transactions. Some miners choose to mine transactions without fees on a best-effort basis. Other miners may choose to ignore transactions without fees.
Any transactions left in the memory pool after the block is filled will remain in the pool for inclusion in the next block. As transactions remain in the memory pool, their inputs "age", as the UTXO they spend get deeper into the blockchain with new blocks added on top. Since a transactions priority depends on the age of its inputs, transactions remaining in the pool will age and therefore increase in priority. Eventually a transaction without fees may reach a high enough priority to be included in the block for free.
Bitcoin transactions do not have an expiration time-out. A transaction that is valid now will be valid in perpetuity. However, if a transaction is only propagated across the network once it will persist only as long as it is held in a mining node memory pool. When a mining node is restarted, its memory pool is wiped clear, as it is a transient non-persistent form of storage. While a valid transaction may have been propagated across the network, if it is not executed it may eventually not reside in the memory pool of any miner. Wallet software is expected to retransmit such transactions or reconstruct them with higher fees if they are not successfully executed within a reasonable amount of time.
When Jing's node aggregates all the transactions from the memory pool, the new candidate block has 418 transactions with total transaction fees of 0.09094928 bitcoin. You can see this block in the blockchain using the Bitcoin Core client command line interface:
The first transaction added to the block is a special transaction, called a _generation transaction_ or _coinbase transaction_. This transaction is constructed by Jing's node and is his reward for the mining effort. Jing's node creates the generation transaction as a payment to his own wallet: "Pay Jing's address 25.09094928 bitcoin". The total amount of reward that Jing collects for mining a block is the sum of the coinbase reward (25 new bitcoins) and the transaction fees (0.09094928) from all the transactions included in the block.
Unlike regular transactions, the generation transaction does not consume (spend) UTXO as inputs. Instead, it has only one input, called the _coinbase_, which creates bitcoin from nothing. The generation transaction has one output, payable to the miner's own bitcoin address. The output of the generation transaction sends the value of 25.09094928 bitcoins to the miner's bitcoin address, in this case +1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N+.
To construct the generation transaction, Jing's node first calculates the total amount of transaction fees, by adding all the inputs and outputs of the 418 transactions that were added to the block. The fees are calculated as:
----
Total Fees = Sum(Inputs) - Sum(Outputs)
----
In block 277,316 the total transaction fees are 0.09094928 bitcoin.
Next, Jing's node calculates the correct reward for the new block. The reward is calculated based on the block height, starting at 50 bitcoin per block and reduced by half every 210,000 blocks. Since this block is at height 277,316, the correct reward is 25 bitcoin.
The calculation can be seen in function +GetBlockValue+ in the Bitcoin Core client:
[[getblockvalue_source]]
.Calculating the block reward - Function GetBlockValue, Bitcoin Core Client, main.cpp, line 1305
====
[source, cpp]
----
int64_t GetBlockValue(int nHeight, int64_t nFees)
{
int64_t nSubsidy = 50 * COIN;
int halvings = nHeight / Params().SubsidyHalvingInterval();
// Force block reward to zero when right shift is undefined.
if (halvings >= 64)
return nFees;
// Subsidy is cut in half every 210,000 blocks which will occur approximately every 4 years.
nSubsidy >>= halvings;
return nSubsidy + nFees;
}
----
====
The initial subsidy is calculated in satoshis by multiplying 50 with the +COIN+ constant (100,000,000 satoshis). This sets the initial reward (+nSubsidy+) at 5 billion satoshis.
Next, the function calculates the number of +halvings+ that have occurred by dividing the current block height by the halving interval (+SubsidyHalvingInterval+). In the case of block 277,316, with a halving interval every 210,000 blocks, the result is 1 halving.
The maximum number of halvings allowed is 64, so the code imposes a zero reward (return only the fees) if the 64 halvings is exceeded.
Next, the function uses the binary-right-shift operator to divide the reward (+nSubsidy+) by 2 for each round of halving. In the case of block 277,316 this would binary-right-shift the reward of 5 billion satoshis once (one halving) and result in 2.5 billion satoshis, or 25 bitcoin. The binary-right-shift operator is used because it is more efficient for division by 2 than integer or floating point division.
Finally, the coinbase reward (+nSubsidy+) is added to the transaction fees (+nFees+), and the sum is returned.
With these calculations, Jing's node then constructs the generation transaction to pay himself 25.09094928 bitcoin. The generation transaction is the first transaction in the block, so we can see it in more detail using the Bitcoin Core command-line interface:
As you can see in <<generation_tx_example>>, the generation transaction has a special format. Instead of a transaction input specifying a previous UTXO to spend, it has a "coinbase" input. We examined transaction inputs in <<tx_in_structure>>. Let's compare a regular transaction input with a generation transaction input. A regular transaction looks like this:
In a generation transaction, the first two fields are set to values that do not represent a UTXO reference. Instead of a "Transaction Hash", the first field is filled with 32 bytes all set to zero. The "Output Index" is filled with 4 bytes all set to 0xFF (255 decimal). The "Unlocking Script" is replaced by coinbase data, an arbitrary data field used by the miners.
==== Coinbase Data
Generation transactions do not have an unlocking script (a.k.a scriptSig) field. Instead, this field is replaced by coinbase data, which must be between 2 and 100 bytes. Except for the first few bytes (see below) the rest of the coinbase data can be used by miners in any way they want, it is arbitrary data.
In the genesis block, for example, Satoshi Nakamoto added the text "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks" in the coinbase data, using it as a proof of the date and to convey a message. Currently, miners use the coinbase data to include extra nonce values (see <<mining>>) and strings identifying the mining pool, as we will see in the following sections.
The first few bytes of the coinbase used to be arbitrary, but that is no longer the case. As per Bitcoin Improvement Proposal 34 (BIP0034), version-2 blocks (blocks with the version field set to 2) must contain the block height index as a script "push" operation in the beginning of the coinbase field.
In block 277,316 we see that the coinbase (see <<generation_tx_example>>), which is in the "Unlocking Script" or scriptSig field of the transaction input, contains the hexadecimal value +03443b0403858402062f503253482f+. Let's decode this value.
The first byte, +03+ instructs the script execution engine to push the next 3 bytes onto the script stack (see <<tx_script_ops_table_pushdata>>). The next 3 bytes, +0x443b04+, are the block height encoded in little-endian format (backwards, least significant bit first). Reverse the order of the bytes and the result is +0x043b44+ which is 277,316 in decimal.
The next few hexadecimal digits (+03858402062+) are used to encode an extra _nonce_, or random value, used to find a suitable Proof-of-Work solution. This is discussed in more detail in the next section on <<mining>>
The final part of the coinbase data (+2f503253482f+) is the ASCII-encoded string "/P2SH/", which indicates that mining node that mined this block supports the Pay-to-Script-Hash (P2SH) improvement defined in BIP0016. The introduction of the P2SH capability required a "vote" by miners to endorse either BIP0016 or BIP0017. Those endorsing the BIP0016 implementation were to include "/P2SH/" in their coinbase data. Those endorsing the BIP0017 implementation of P2SH were to include the string "p2sh/CHV" in their coinbase data. The BIP0016 was elected as the winner, and many miners continued including the string "/P2SH/" in their coinbase to indicate support for this feature.
At the time block 277,316 was mined, the version number describing the block structure is version "2", which is encoded in little-endian format in 4 bytes as +0x02000000+.
Next, the mining node needs to add the "Previous Block Hash". That is the hash of the block header of block 277,315, the previous block received from the network, which Jing's node has accepted and selected as the parent of the candidate block 277,316. The block header hash for block 277,315 is +0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569+.
The next step is to summarize all the transactions with a Merkle Tree, in order to add the Merkle Root to the block header. The generation transaction is listed as the first transaction in the block. Then, 418 more transactions are added after it, for a total of 419 transactions in the block. As we saw in the <<merkle_trees>>, there must be an even number of "leaf" nodes in the tree, so the last transaction is duplicated, creating 420 nodes, each containing the hash of one transaction. The transaction hashes are then combined, in pairs, creating each level of the tree, until all the transactions are summarized into one node at the "root" of the tree. The root of the merkle tree summarizes all the transactions into a single 32 byte value +c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e+ which you can see listed as "merkle root" in <<block277316>>
The mining node will then add a 4-byte timestamp, encoded as a Unix "Epoch" timestamp, which is based on the number of seconds elapsed from January 1st, 1970, midnight UTC/GMT. The time +1388185914+ is equal to Friday, 27 Dec 2013, 23:11:54 UTC/GMT.
The node then fills in the difficulty target, which defines the required Proof-of-Work difficulty to make this a valid block. The difficulty is stored in the block as a "difficulty bits" metric, which is a mantissa-exponent encoding of the target. The encoding has a one-byte exponent, followed by a 3 byte mantissa (coefficient). In block 277,316, for example, the difficulty bits value is +0x1903a30c+. The first part +0x19+ is a hexadecimal exponent, while the next part +0x03a30c+ is the coefficient. The concept of a difficulty target is explained in <<difficulty_target>> and the "difficulty bits" representation is explained in <<difficulty_bits>>.
The final field is the nonce, which is initialized to zero.
With all the other fields filled, the block header is now complete and the process of mining can begin. The goal is now to find a value for the nonce that results in a block header hash that is less than the difficulty target. The mining node will need to test billions or trillions of nonce values before a nonce is found that satisfies the requirement.
Now that a candidate block has been constructed by Jing's node, it is time for Jing's hardware mining rig to "mine" the block, to find a solution to the Proof-of-Work algorithm that makes the block valid. Throughout this book we have studied cryptographic hash functions as used in various aspects of the bitcoin system. The hash function SHA-256 is the function used in bitcoin's mining process.
In the simplest terms, mining is the process of hashing the block header repeatedly, changing one parameter, until the resulting hash matches a specific target. The hash function's result cannot be determined in advance, nor can a pattern be created that will produce a specific hash value. This feature of hash functions means that the only way to produce a hash result matching a specific target, is to try again and again, randomly modifying the input until the desired hash result appears by chance.
A hash algorithm takes an arbitrary-length data input and produces a fixed-length deterministic result, a digital fingerprint of the input. For any specific input, the resulting hash will always be the same and can be easily calculated and verified by anyone implementing the same hash algorithm. The key characteristic of a cryptographic hash algorithm is that it is impossible to find two different inputs that produce the same fingerprint. As a corollary, it is also impossible to select an input in such a way as to produce a desired fingerprint, other than trying random inputs.
With SHA-256, the output is always 256 bits long, regardless of the size of the input. In the example below, we will use the Python interpreter to calculate the SHA256 hash of the phrase "I am Satoshi Nakamoto".
The example shows that if we calculate the hash of the phrase +"I am Satoshi Nakamoto"+, it will produce +5d7c7ba21cbbcd75d14800b100252d5b428e5b1213d27c385bc141ca6b47989e+. This 256-bit number is the _hash_ or _digest_ of the phrase and depends on every part of the phrase. Adding a single letter, punctuation mark or any character will produce a different hash.
Now, if we change the phrase, we will expect to see completely different hashes. Let's try that by adding a number to the end of our phrase, using this simple Python script
Running this will produce the hashes of several phrases, made different by adding a number at the end of the text. By incrementing the number, we can get different hashes.
Each phrase produces a completely different hash result. They seem completely random, but you can re-produce the exact results in this example on any computer with Python and see the same exact hashes.
The number used as a variable in such a scenario is called a _nonce_. The nonce is used to vary the output of a cryptographic function, in this case to vary the SHA-256 fingerprint of the phrase.
To make a challenge out of this algorithm, let's set an arbitrary target: find a phrase that produces a hexadecimal hash that starts with a zero. Fortunately, this isn't so difficult! If you notice above, we can see that the phrase "I am Satoshi Nakamoto13" produces the hash 0ebc56d59a34f5082aaef3d66b37a661696c2b618e62432727216ba9531041a5, which fits our criteria. It took 13 attempts to find it. In terms of probabilities, if the output of the hash function is evenly distributed we would expect to find a result with a 0 as the hexadecimal prefix once every 16 hashes (one out of 16 hexadecimal digits 0 through F). In numerical terms, that means finding a hash value that is less than +0x1000000000000000000000000000000000000000000000000000000000000000+. We call this threshold the _target_ and the goal is to find a hash that is numerically _less than the target_. If we decrease the target, the task of finding a hash that is less than the target becomes more and more difficult.
To give a simple analogy, imagine a game where players throw a pair of dice repeatedly, trying to throw less than a specified target. In the first round, the target is 12. Unless you throw double-six, you win. In the next round the target is 11. Players must throw 10 or less to win, again an easy task. Let's say a few rounds later the target is down to 5. Now, more than half the dice throws will add up to more than 5 and therefore be invalid. It takes exponentially more dice throws to win the lower the target gets. Eventually, when the target is 2 (the minimum possible), only one throw out of every 36, or 2% of them will produce a winning result.
In the example above, the winning "nonce" is 13 and this result can be confirmed by anyone independently. Anyone can add the number 13 as a suffix to the phrase "I am Satoshi Nakamoto" and compute the hash, verifying that it is less than the target. The successful result is also proof-of-work, as it proves we did the work to find that nonce. While it only takes one hash computation to verify, it took us 13 hash computations to find a nonce that worked. If we had a lower target (higher difficulty) it would take many more hash computations to find a suitable nonce, but only one hash computation for anyone to verify. Furthermore, by knowing the target, anyone can estimate the difficulty using statistics and therefore know how much work was needed to find such a nonce.
Bitcoin's Proof-of-Work is very similar to the problem above. The miner constructs a candidate block filled with transactions. Next, the miner calculates the hash of this block's header and see if it is smaller than the current _target_. If the hash is not less than the target, the miner will modify the nonce (usually just incrementing it by one) and try again. At the current difficulty in the bitcoin network, miners have to try quadrillions of times before finding a nonce that results in a low enough block header hash.
Running the code above, you can set the desired difficulty (in bits, how many of the leading bits must be zero) and see how long it takes for your computer to find a solution. In the following examples, you can see how it works on an average laptop:
As you can see, increasing the difficulty by 1 bit causes an exponential increase in the time it takes to find a solution. If you think of the entire 256-bit number space, each time you constrain one more bit to zero, you decrease the search space by half. In the example above, it takes 84 million hash attempts to find a nonce that produces a hash with 26 leading bits as zero. Even at a speed of more than 120 thousand hashes per second, it still requires ten minutes on a consumer laptop to find this solution.
At the time of writing this, the network is attempting to find a block whose header hash is less than +000000000000004c296e6376db3a241271f43fd3f5de7ba18986e517a243baa7+. As you can see, there are a lot of zeroes at the beginning of that hash, meaning that the acceptable range of hashes is much smaller, hence more difficult to find a valid hash. It will take on average more 150 quadrillion hash calculations per second for the network to discover the next block. That seems like an impossible task, but fortunately the network is bringing 100 Peta Hashes per second of processing power to bear, which will be able to find a block in about 10 minutes on average.
As we saw above the target determines the difficulty and therefore affects how long it takes to find a solution to the Proof-of-Work algorithm. This leads to the obvious questions: Why is the difficulty adjustable, who adjusts it and how?
Bitcoin's blocks are generated every 10 minutes, on average. This is bitcoin's heartbeat and underpins the frequency of currency issuance and the speed of transaction settlement. It has to remain constant not just over the short term, but over a period of many decades. Over this time, it is expected that computer power will continue to increase at a rapid pace. Furthermore, the number of participants in mining and the computers they use will also constantly change. To keep the block generation time at 10 minutes, the difficulty of mining must be adjusted to account for these changes. In fact, difficulty is a dynamic parameter that will be periodically adjusted to meet a 10-minute block target. In simple terms, the difficulty target is set to whatever mining power will result in a 10-minute block interval.
How then is such an adjustment made in a completely de-centralized network? Difficulty re-targeting occurs automatically and on every full node independently. Every 2016 blocks, all nodes re-target the Proof-of-Work difficulty. The equation for retargeting difficulty measures the time it took to find the last 2016 blocks and compares that to the expected time of 20160 minutes (two weeks based upon a desired 10 minute block time). The ratio between the actual timespan and desired timespan is calculated and a corresponding adjustment (up or down) is made to the difficulty. In simple terms: If the network is finding blocks faster than every 10 minutes, the difficulty increases. If block discovery is slower than expected, the difficulty decreases.
The parameters Interval (2016 blocks) and TargetTimespan (two weeks as 1,209,600 seconds) are defined in +chainparams.cpp+
To avoid extreme volatility in the difficulty, the retargeting adjustment must be less than a factor of four (4) per cycle. If the required difficulty adjustment is greater than a factor of four, it will be adjusted by the maximum and not more. Any further adjustment will be accomplished in the next retargeting period as the imbalance will persist through the next 2016 blocks. Therefore, large discrepancies between hashing power and difficulty may take several 2016 block cycles to balance out.
The difficulty of finding a bitcoin block is approximately '10 minutes of processing' for the entire network, based on the time it took to find the previous 2016 blocks, adjusted every 2016 blocks.
Note that the target difficulty is independent of the number of transactions or the value of transactions. This means that the amount of hashing power and therefore electricity expended to secure bitcoin is also entirely independent of the number of transactions. Bitcoin can scale up, achieve broader adoption and remain secure without any increase in hashing power from today's level. The increase in hashing power represents market forces as new miners enter the market to compete for the reward. As long as enough hashing power is under the control of miners acting honestly in pursuit of the reward, it is enough to prevent "takeover" attacks and therefore it is enough to secure bitcoin.
The target difficulty is closely related to the cost of electricity and the exchange rate of bitcoin vis-a-vis the currency used to pay for electricity. High performance mining systems are about as efficient as possible with the current generation of silicon fabrication, converting electricity into hashing computation at the highest rate possible. The primary influence on the mining market is the price of one kilowatt-hour in bitcoin, as that determines the profitability of mining and therefore the incentives to enter or exit the mining market.
As we saw earlier, Jing's node has constructed a candidate block and prepared it for mining. Jing has several hardware mining rigs with Application Specific Integrated Circuits, where hundreds of thousands of integrated circuits run the SHA-256 algorithm in parallel at incredible speeds. These specialized machines are connected to his mining node over USB. Next, the mining node running on Jing's desktop transmits the block header to his mining hardware, which start testing trillions of nonces per second.
Almost eleven minutes after starting to mine block 277,316, one of the hardware mining machines finds a solution and sends it back to the mining node. The nonce 4,215,469,401 when inserted into the block header produces a block hash of +0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569+, which is less than the target of +0000000000000003A30C00000000000000000000000000000000000000000000+.
Immediately, Jing's mining node transmits the block to all its peers. They receive, validate and then propagate the new block. As the block ripples out across the network, each node adds it to its own copy of the blockchain, extending it to a new height of 277,316 blocks. As mining nodes receive and validate the block, they abandon their efforts to find a block at the same height and immediately start computing the next block in the chain.
In the next section we'll look at the process each node uses to validate a block and select the longest chain, creating the consensus that forms the de-centralized blockchain.
The third step in bitcoin's consensus mechanism is independent validation of each new block by every node on the network. As the newly solved block moves across the network, each node performs a series of tests to validate it before propagating it to its peers. This ensures that only valid blocks are propagated on the network. The independent validation also ensures that miners who act honestly get their blocks incorporated in the blockchain, thus earning the reward. Those miners who act dishonestly have their blocks rejected and not only lose the reward but also waste the effort expended to find a Proof-of-Work solution, thus incurring the cost of electricity without compensation.
When a node receives a new block, it will validate the block by checking it against a long list of criteria. These criteria can be seen in the Bitcoin Core client in the functions +CheckBlock+ and +CheckBlockHeader+. These criteria include:
The independent validation of each new block by every node on the network ensures that the miners can't cheat. In previous sections we saw how the miners get to write a transaction that awards them the new bitcoins created within the block and claim the transaction fees. Why does the miner not write themselves a transaction for a thousand bitcoin instead of the correct reward? Because that would make the block invalid, which would result in it being rejected and therefore that transaction would never become part of the ledger. The miner has to construct a perfect block, based on the shared rules that all nodes follow and mine it with a correct solution to the Proof-of-Work. To do so they expend a lot of electricity in mining and if they cheat all the electricity and effort is wasted. This is why independent validation is a key component of decentralized consensus.
The final step in bitcoin's de-centralized consensus mechanism is the assembly of blocks into chains and the selection of the chain with the most Proof-of-Work. Once a node has validated a new block, it will then attempt to assemble a chain, by connecting the block to the existing blockchain.
Nodes maintain three sets of blocks: those connected to the main blockchain, those that form branches off the main blockchain (secondary chains) and finally blocks that do not have a known parent in the known chains (orphans). Invalid blocks are rejected as soon as any one of the validation criteria fails and are therefore not included in any chain.
The "main chain" at any time is whichever chain of blocks has the most cumulative difficulty associated with it. Under most circumstances this is also the chain with the most blocks in it, unless there are two equal length chains and one has more proof-of-work. The main chain will also have branches with blocks that are "siblings" to the blocks on the main chain. These blocks are valid but not part of the main chain. They are kept for future reference, in case one of those chains is extended to exceeds the main chain in difficulty. In the next section (<<forks>>), we will see how secondary chains occur as a result of an almost simultaneous mining of blocks at the same height.
When a new block is received, a node will try to slot it into the existing blockchain. The node will look at the block's "previous block hash" field, which is the reference to the new block's parent. Then the node will attempt to find that parent in the existing blockchain. Most of the time, the parent will be the "tip" of the main chain, meaning this new block extends the main chain. For example, the new block 277,316 has a reference to the hash of its parent block 277,315. Most nodes that receive 277,316 will already have block 277,315 as the tip of their main chain and will therefore link the new block and extend that chain.
Sometimes, as we will see in <<forks>>, the new block extends a chain that is not the main chain. In that case, the node will attach the new block to the secondary chain it extends and then compare the difficulty of the secondary chain to the main chain. If the secondary chain has more cumulative difficulty than the main chain, the node will _reconverge_ on the secondary chain, meaning it will select the secondary chain as its new main chain, making the old main chain a secondary chain.
If a block is received and no parent is found in the existing chains, then that block is considered an "orphan". Orphan blocks are put into a temporary pool where they will stay until their parent is received. Once the parent is received and linked into the existing chains, the orphan can be pulled out of the orphan pool and linked to the parent, making it part of a chain. Orphan blocks usually occur when two blocks that were mined within a short time of each other are received in reverse order (child before parent).
By selecting the greatest-difficulty chain, all nodes eventually achieve network-wide consensus. Temporary discrepancies between chains are resolved eventually as more Proof-of-Work is added, extending one of the possible chains. Mining nodes "vote" with their mining power by choosing which chain to extend by mining the next block. When they find a new block and extend the chain, the new block itself represents their vote.
In the next section we will look at how discrepancies between competing chains (forks) are resolved by the independent selection of the longest difficulty chain.
[[forks]]
==== Blockchain Forks
Because the blockchain is a decentralized data structure, different copies of it are not always consistent. Blocks may arrive at different nodes at different times, causing them to have a different perspective of the blockchain. To resolve this, each node always selects and attempts to extend the chain of blocks that represents the most Proof-of-Work, also known as the longest chain or greatest cumulative difficulty chain. By summing the difficulty recorded in each block in a chain, a node can calculate the total amount of Proof-of-Work that has been expended to create that chain. As long as all nodes select the longest cumulative difficulty chain, the global bitcoin network eventually converges to a consistent state. Forks occur as temporary inconsistencies between versions of the blockchain, which are resolved by eventual re-convergence as more blocks are added to one of the forks.
.Visualization of a blockchain fork event - Before the Fork
image::images/GlobalFork1.png["globalfork1"]
A "fork" occurs whenever there are two candidate blocks competing to form the longest blockchain. This occurs under normal conditions whenever two miners solve the Proof-of-Work algorithm within a short period of time from each other. As both miners discover a solution for their respective candidate blocks, they immediately broadcast their own "winning" block to their immediate neighbors who begin propagating the block across the network. Each node that receives a valid block will incorporate it into their blockchain, extending the blockchain by one block. If that node later sees another candidate block extending the same parent, they ignore the second candidate. As a result, some nodes will "see" one candidate block first, while other nodes will see the other candidate block and two competing versions of the blockchain will emerge.
{create a graphic with the globe, two miners each - bitcoin topology map}
[[fork2]]
.Visualization of a blockchain fork event - Two blocks found simultaneously
Let's assume for example that a miner in Canada finds a Proof-of-Work solution for block "A" that extends the blockchain from height 315000 to height 315001, building on top of parent block "P". Almost simultaneously, an Australian miner who was also extending block "P", finds a solution for block "B", their candidate block. Now, there are two possible candidates for block height 315001, one we call "A", originating in Canada and one we call "B", originating in Australia. Both blocks are valid, both blocks contain a valid solution to the proof of work, both blocks extend the same parent. Both blocks likely contain most of the same transactions, with only perhaps a few differences in the order of transactions.
.Visualization of a blockchain fork event - Two blocks propagate, splitting the network
image::images/GlobalFork3.png["globalfork3"]
From that moment, the bitcoin network nodes closest (topologically, not geographically) to the Canadian node will hear about block "A" first and will create a new greatest-cumulative-difficulty blockchain with height 315001 and "A" as the last block in the chain (e.g. P-A), ignoring the candidate block "B" that arrives a bit later. Meanwhile, nodes closer to the Australian node will take that block as the winner and extend the blockchain to height 315001 with "B" as the last block (e.g. P-B), ignoring "A" when it arrives a few seconds later. Any miners that saw "A" first will immediately build candidate blocks that reference "A" as the parent and start trying to solve the PoW for these candidate blocks. The miners that accepted "B" instead, will start extending that chain.
----
Block "A" extends the chain: P-A
Block "B" also extends the chain: P-B
----
[[fork4]]
.Visualization of a blockchain fork event - A new block extends one fork
image::images/GlobalFork4.png["globalfork4"]
Forks are almost always resolved within one block. As part of the network's hashing power is dedicated to building on top of "A" as the parent, another part of the hashing power is focused on building on top of "B". Even if the hashing power is almost evenly split, it is likely that one set of miners will find a solution and propagate it before the other set of miners have found any solutions. Let's say for example that the miners building on top of "B" find a new block "X" that extends the chain to height 315002 (e.g. P-B-X). They immediately propagate this new block and the entire network sees it as a valid solution.
All nodes that had chosen "B" as the winner in the previous round will simply extend the chain one more block. The nodes that chose "A" as the winner, however, will now see a block extending an even longer chain (greater-cumulative difficulty), that does not include "A" in it. Any miners working on extending the chain P-A will now stop that work because their candidate block is an "orphan", as its parent "A" is no longer on the longest chain. The block "A" is removed from the blockchain by any nodes that had accepted it and any transactions within it are queued up again for processing in the next block. The entire network re-converges on a single blockchain P-B-X, with "X" as the last block in the chain. All miners immediately start working on candidate blocks that reference "X" as their parent to extend the P-B-X chain.
It is theoretically possible for a fork to extend to two blocks, if two blocks are found almost simultaneously by miners on opposite "sides" of a previous fork. However, the chance of that happening is very low. Whereas a one-block fork may occur every week, a two-block fork is exceedingly rare.
----
Block "X" extends the chain: P-B-X
Old chain is now "shorter": P-A
----
[TIP]
====
As of version 0.9, Bitcoin Core's +alertnotify+ option will send alerts whenever a 6-block or longer fork occurs
{miners that are on mining pools get the difficulty (do not calculate difficulty independently) they are given the difficulty from the mining pool so they don't have to calculate the difficulty themselves and they are actually given a lower difficulty target. There are essentially two classifications of miners today - pool miners and solo miners. Solo miners run a full node and compete on their own. Whereas pool miners collaborate with one another and compete against the network as a team, while sharing the reward. The reason miners join pools - solo miners need an enormous amount of hashing power in order to have even the slimmest chance of finding a solution to a block which will make their earnings erratic. By participating in a pool, miners get smaller shares but a more regular share of rewards, reducing uncertainty. Solo mining is becoming obsolete, as the difficulty increases the likelihood of a solo miner finding a solution is more like winning the lottery.}