1
0
mirror of https://github.com/bitcoinbook/bitcoinbook synced 2025-01-01 11:21:02 +00:00
bitcoinbook/selected BIPs/bip-0016.asciidoc

224 lines
9.0 KiB
Plaintext
Raw Normal View History

--------------------------------------------------
BIP: 16
Title: Pay to Script Hash
Author: Gavin Andresen <gavinandresen@gmail.com>
Status: Final
Type: Standards Track
Created: 2012-01-03
--------------------------------------------------
[[abstract]]
Abstract
~~~~~~~~
This BIP describes a new "standard" transaction type for the Bitcoin
scripting system, and defines additional validation rules that apply
only to the new transactions.
[[motivation]]
Motivation
~~~~~~~~~~
The purpose of pay-to-script-hash is to move the responsibility for
supplying the conditions to redeem a transaction from the sender of the
funds to the redeemer.
The benefit is allowing a sender to fund any arbitrary transaction, no
matter how complicated, using a fixed-length 20-byte hash that is short
enough to scan from a QR code or easily copied and pasted.
[[specification]]
Specification
~~~~~~~~~~~~~
A new standard transaction type that is relayed and included in mined
blocks is defined:
`   OP_HASH160 [20-byte-hash-value] OP_EQUAL`
[20-byte-hash-value] shall be the push-20-bytes-onto-the-stack opcode
(0x14) followed by exactly 20 bytes.
This new transaction type is redeemed by a standard scriptSig:
`   ...signatures... {serialized script}`
Transactions that redeem these pay-to-script outpoints are only
considered standard if the _serialized script_ - also referred to as the
_redeemScript_ - is, itself, one of the other standard transaction
types.
The rules for validating these outpoints when relaying transactions or
considering them for inclusion in a new block are as follows:
1. Validation fails if there are any operations other than "push data"
operations in the scriptSig.
2. Normal validation is done: an initial stack is created from the
signatures and \{serialized script}, and the hash of the script is
computed and validation fails immediately if it does not match the hash
in the outpoint.
3. \{serialized script} is popped off the initial stack, and the
transaction is validated again using the popped stack and the
deserialized script as the scriptPubKey.
These new rules should only be applied when validating transactions in
blocks with timestamps >= 1333238400 (Apr 1 2012)
footnote:[https://github.com/bitcoin/bitcoin/commit/8f188ece3c82c4cf5d52a3363e7643c23169c0ff[Remove
-bip16 and -paytoscripthashtime command-line arguments]]. There are
transaction earlier than 13333238400 in the block chain that fail these
new validation rules.
footnote:[http://blockexplorer.com/tx/6a26d2ecb67f27d1fa5524763b49029d7106e91e3cc05743073461a719776192[Transaction
6a26d2ecb67f27d1fa5524763b49029d7106e91e3cc05743073461a719776192]].
Older transactions must be validated under the old rules. (see the
Backwards Compatibility section for details).
For example, the scriptPubKey and corresponding scriptSig for a
one-signature-required transaction is:
`   scriptSig: [signature] {[pubkey] OP_CHECKSIG}` +
`   scriptPubKey: OP_HASH160 [20-byte-hash of {[pubkey] OP_CHECKSIG} ] OP_EQUAL`
Signature operations in the \{serialized script} shall contribute to the
maximum number allowed per block (20,000) as follows:
1. OP_CHECKSIG and OP_CHECKSIGVERIFY count as 1 signature operation,
whether or not they are evaluated.
2. OP_CHECKMULTISIG and OP_CHECKMULTISIGVERIFY immediately preceded by
OP_1 through OP_16 are counted as 1 to 16 signature operation, whether
or not they are evaluated.
3. All other OP_CHECKMULTISIG and OP_CHECKMULTISIGVERIFY are counted as
20 signature operations.
Examples:
+3 signature operations:
`   {2 [pubkey1] [pubkey2] [pubkey3] 3 OP_CHECKMULTISIG}`
+22 signature operations
`   {OP_CHECKSIG OP_IF OP_CHECKSIGVERIFY OP_ELSE OP_CHECKMULTISIGVERIFY OP_ENDIF}`
[[rationale]]
Rationale
~~~~~~~~~
This BIP replaces BIP 12, which proposed a new Script opcode ("OP_EVAL")
to accomplish everything in this BIP and more.
The Motivation for this BIP (and BIP 13, the pay-to-script-hash address
type) is somewhat controversial; several people feel that it is
unnecessary, and complex/multisignature transaction types should be
supported by simply giving the sender the complete \{serialized script}.
The author believes that this BIP will minimize the changes needed to
all of the supporting infrastructure that has already been created to
send funds to a base58-encoded-20-byte bitcoin addresses, allowing
merchants and exchanges and other software to start supporting
multisignature transactions sooner.
Recognizing one 'special' form of scriptPubKey and performing extra
validation when it is detected is ugly. However, the consensus is that
the alternatives are either uglier, are more complex to implement,
and/or expand the power of the expression language in dangerous ways.
The signature operation counting rules are intended to be easy and quick
to implement by statically scanning the \{serialized script}. Bitcoin
imposes a maximum-number-of-signature-operations per block to prevent
denial-of-service attacks on miners. If there was no limit, a rogue
miner might broadcast a block that required hundreds of thousands of
ECDSA signature operations to validate, and it might be able to get a
head start computing the next block while the rest of the network worked
to validate the current one.
There is a 1-confirmation attack on old implementations, but it is
expensive and difficult in practice. The attack is:
1. Attacker creates a pay-to-script-hash transaction that is valid as
seen by old software, but invalid for new implementation, and sends
themselves some coins using it.
2. Attacker also creates a standard transaction that spends the
pay-to-script transaction, and pays the victim who is running old
software.
3. Attacker mines a block that contains both transactions.
If the victim accepts the 1-confirmation payment, then the attacker wins
because both transactions will be invalidated when the rest of the
network overwrites the attacker's invalid block.
The attack is expensive because it requires the attacker create a block
that they know will be invalidated by the rest of the network. It is
difficult because creating blocks is difficult and users should not
accept 1-confirmation transactions for higher-value transactions.
[[backwards-compatibility]]
Backwards Compatibility
~~~~~~~~~~~~~~~~~~~~~~~
These transactions are non-standard to old implementations, which will
(typically) not relay them or include them in blocks.
Old implementations will validate that the \{serialize script}'s hash
value matches when they validate blocks created by software that fully
support this BIP, but will do no other validation.
Avoiding a block-chain split by malicious pay-to-script transactions
requires careful handling of one case:
* A pay-to-script-hash transaction that is invalid for new
clients/miners but valid for old clients/miners.
To gracefully upgrade and ensure no long-lasting block-chain split
occurs, more than 50% of miners must support full validation of the new
transaction type and must switch from the old validation rules to the
new rules at the same time.
To judge whether or not more than 50% of hashing power supports this
BIP, miners are asked to upgrade their software and put the string
"/P2SH/" in the input of the coinbase transaction for blocks that they
create.
On February 1, 2012, the block-chain will be examined to determine the
number of blocks supporting pay-to-script-hash for the previous 7 days.
If 550 or more contain "/P2SH/" in their coinbase, then all blocks with
timestamps after 15 Feb 2012, 00:00:00 GMT shall have their
pay-to-script-hash transactions fully validated. Approximately 1,000
blocks are created in a week; 550 should, therefore, be approximately
55% of the network supporting the new feature.
If a majority of hashing power does not support the new validation
rules, then rollout will be postponed (or rejected if it becomes clear
that a majority will never be achieved).
[[byte-limitation-on-serialized-script-size]]
520-byte limitation on serialized script size
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
As a consequence of the requirement for backwards compatiblity the
serialized script is itself subject to the same rules as any other
PUSHDATA operation, including the rule that no data greater than 520
bytes may be pushed to the stack. Thus is it not possible to spend a
P2SH output if the redemption script it refers to is >520 bytes in
length. For instance while the OP_CHECKMULTISIG opcode can itself accept
up to 20 pubkeys, with 33-byte compressed pubkeys it is only possible to
spend a P2SH output requiring a maximum of 15 pubkeys to redeem: 3 bytes
+ 15 pubkeys * 34 bytes/pubkey = 513 bytes.
[[reference-implementation]]
Reference Implementation
~~~~~~~~~~~~~~~~~~~~~~~~
https://gist.github.com/gavinandresen/3966071
[[see-also]]
See Also
~~~~~~~~
* https://bitcointalk.org/index.php?topic=46538
* The link:bip-0013.mediawiki[Address format for Pay to Script Hash BIP]
* M-of-N Multisignature Transactions link:bip-0011.mediawiki[BIP 11]
* link:bip-0016/qa.mediawiki[Quality Assurance test checklist]
[[references]]
References
~~~~~~~~~~