1
0
mirror of https://github.com/bitdefender/bddisasm.git synced 2024-11-22 15:38:07 +00:00
bddisasm/isagenerator/disasmlib.py
Andrei Vlad LUTAS 9ff2543660 Added the Shadow Stack Pointer operand to the SYSCALL and SYSEXIT instructions.
Moved the CET test cases in dedicated folders.
Improved shadow-stack operand reporting - a distinction can be made between push/pop shadow stack accesses, and other shadow stack accesses.
A new field is now present in the memory information - the shadow stack access type, which indicates: explicit access, implicit via SSP, implicit push/pop via SSP or implicit via IA32_PL0_SSP.
2020-07-21 22:29:59 +03:00

1356 lines
57 KiB
Python

#
# Copyright (c) 2020 Bitdefender
# SPDX-License-Identifier: Apache-2.0
#
import os
import sys
import re
import glob
valid_attributes = {
'MODRM', # Mod r/m is present.
'II64', # Instruction invalid in 64 bit mode.
'F64', # Operand size forced to 64 bit.
'D64', # Operand size defaults to 64 bit.
'O64', # Instruction valid only in 64 bit mode.
'SSECONDB', # Instruction has condition byte.
'COND', # Instruction has predicated encoded in lower 4 bit of the opcode.
'VSIB', # Instruction uses VSIB addressing.
'MIB', # Instruction uses MIB addressing.
'LIG', # *vex.L is ignored.
'WIG', # *vex.W is ignored.
'3DNOW', # Instruction uses 3dnow encoding.
'MMASK', # Instruction must have mask specified (mask cannot be k0).
'NOMZ', # Zeroing not allowed with memory addressing.
'LOCKSP', # Special lock - MOV CR on amd can use LOCK to access CR8 in 32 bit mode.
'NOL0', # Vector length 128 not supported.
'NOA16', # 16 bit addressing not supported.
'NO66', # 0x66 prefix causes #UD.
'NORIPREL', # RIP relative addressing not supported.
'VECT', # Vector instruction.
'S66', # 0x66 prefix changes length even if it is in special map (66, f2, f3).
'BITBASE', # Instruction uses bitbase addressing.
'AG', # Instruction uses address generation, no memory access.
'SHS', # Instruction accesses the shadow stack.
'MFR', # The Mod inside Mod R/M is forced to register. No SIB/disp present.
'CETT', # Instruction is CET tracked.
'OP1DEF', # Operand 1 is default (implicit).
'OP2DEF', # Operand 2 is default (implicit).
'OP2SEXO1', # Operand 2 is sign-extended to the size of the first operand.
'OP3SEXO1', # Operand 3 is sign-extended to the size of the first operand.
'OP1SEXDW', # Operand 1 is sign-extended to the size of the default word.
'PREFIX', # Prefix.
'SERIAL', # Instruction is serializing.
'SIBMEM', # Instruction uses sibmem addressing (AMX instructions).
}
#
# Explicit operands types.
#
valid_optype = [
'A', # Direct address: the instruction has no ModR/M byte; the address of the
# operand is encoded in the instruction. No base register, index register,
# or scaling factor can be applied (for example, far JMP (EA)).
'B', # The VEX.vvvv field of the VEX prefix selects a general purpose register.
'C', # The reg field of the ModR/M byte selects a control register (for example,
# MOV (0F20, 0F22)).
'D', # The reg field of the ModR/M byte selects a debug register (for example,
# MOV (0F21,0F23)).
'E', # A ModR/M byte follows the opcode and specifies the operand. The operand
# is either a general-purpose register or a memory address. If it is a
# memory address, the address is computed from a segment register and any
# of the following values: a base register, an index register, a scaling
# factor, a displacement.
'F', # EFLAGS/RFLAGS Register.
'G', # The reg field of the ModR/M byte selects a general register (for example,
# AX (000)).
'H', # The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a
# 256-bit YMM register, determined by operand type. For legacy SSE
# encodings this operand does not exist, changing the instruction to
# destructive form. Addition: 512 bit ZMM register may also be selected in
# EVEX encodings.
'I', # Immediate data: the operand value is encoded in subsequent bytes of the
# instruction.
'J', # The instruction contains a relative offset to be added to the instruction
# pointer register (for example, JMP (0E9), LOOP).
'K', # The operand is the stack.
'L', # The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register
# or a 256-bit YMM register, determined by operand type. (the MSB is
# ignored in 32-bit mode). Addition: a 512 bit ZMM register may also be
# selected using EVEX encoding.
'M', # The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS,
# LSS, LFS, LGS, CMPXCHG8B).
'N', # The R/M field of the ModR/M byte selects a packed-quadword, MMX
# technology register.
'O', # The instruction has no ModR/M byte. The offset of the operand is coded
# as a word or double word (depending on address size attribute) in the
# instruction. No base register, index register, or scaling factor can be
# applied (for example, MOV (A0-A3)).
'P', # The reg field of the ModR/M byte selects a packed quadword MMX technology
# register.
'Q', # A ModR/M byte follows the opcode and specifies the operand. The operand
# is either an MMX technology register or a memory address. If it is a
# memory address, the address is computed from a segment register and any
# of the following values: a base register, an index register, a scaling
# factor, and a displacement.
'R', # The R/M field of the ModR/M byte may refer only to a general register
# (for example, MOV (0F20-0F23)).
'S', # The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).
'T', # The reg field of the ModR/M byte selects a test register (for example, MOV (0F24, 0F26)).
'U', # The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register,
# determined by operand type. Addition: a 512-bit ZMM register may also be selected using EVEX
# encodings.
'V', # The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register,
# determined by operand type. Addition: a 512-bit ZMM register may also be selected using
# EVEX encodings.
'W', # A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-bit
# XMM register, a 256-bit YMM register (determined by operand type), or a memory address. If it is
# a memory address, the address is computed from a segment register and any of the following values:
# a base register, an index register, a scaling factor, and a displacement. Addition:a 512-bit ZMM
# register may also be selected # using EVEX encodings.
'X', # Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or LODS).
'Y', # Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, STOS, or SCAS).
'Z', # The low 3 bits inside the opcode select a general purpose register. R field inside REX may
# extend it.
'rB', # The reg field selects a BND register.
'mB', # The rm field selects A BND register or a memory location.
'rK', # The reg field selects a mask register.
'vK', # The vvvv field of the VEX prefix selects a mask register.
'mK', # The rm field selects e mask register.
'aK', # The aaa field inside evex selects a mask register which is used for masking of a destination
# operand.
'rM', # The reg field inside modrm encodes the base address of a memory operand. Default segment is ES.
'mM', # The rm field inside modrm encodes the base address of a memory operand, iregardless of the mod
# fields. Default segment is DS.
'rT', # The reg field inside modrm encodes a TMM register (AMX extension).
'mT', # The rm field inside modrm encodes a TMM register (AMX extension).
'vT', # The v field inside vex encodes a TMM register (AMX extension).
]
# Operand sizes.
valid_opsize = [
'a', # Two one-word operands in memory or two double-word operands in memory,
# depending on operand-size attribute (used only by the BOUND instruction).
'b', # Byte, regardless of operand-size attribute.
'c', # Byte or word, depending on operand-size attribute.
'd', # Doubleword, regardless of operand-size attribute.
'dq', # Double-quadword, regardless of operand-size attribute (XMM register or
# 128 bit memory location). A smaller quantity from the 128 bit register may be accessed.
'e', # eighth = word or dword or qword.
'f', # fourth = dword or qword or oword.
'h', # half = qword or oword or yword.
'n', # normal = 128, 256 or 512 bits, depending on vector length.
'u', # 256 or 512 bit, depending on vector length.
# VSIB addressing
'vm32x', # VSIB addressing, using DWORD indices in XMM register, select 32/64 bit.
'vm32y', # VSIB addressing, using DWORD indices in YMM register, select 32/64 bit.
'vm32z', # VSIB addressing, using DWORD indices in ZMM register, select 32/64 bit.
'vm32h', # VSIB addressing, using DWORD indices in half register, select 32/64 bit.
'vm32n', # VSIB addressing, using DWORD indices in normal register, select 32/64 bit.
'vm64x', # VSIB addressing, using QWORD indices in XMM register, select 32/64 bit.
'vm64y', # VSIB addressing, using QWORD indices in YMM register, select 32/64 bit.
'vm64z', # VSIB addressing, using QWORD indices in ZMM register, select 32/64 bit.
'vm64h', # VSIB addressing, using QWORD indices in half register, select 32/64 bit.
'vm64n', # VSIB addressing, using QWORD indices in normal register, select 32/64 bit.
# MIB addressing
'mib', # MIB addressing, the base & the index are used to form a pointer.
# Stack sizes and partial access
'v2', # Two stack words.
'v3', # Three stack words.
'v4', # Four stack words.
'v8', # Eight stack words.
# These are aliased over 'dq.*' encodings.
'o', # Always 128 bits/2 QWORDs. Same as 'dq'.
'oq', # 512 bit regardless the operand size/vector length.
'p', # 32, 48 or 80 bits pointer, depending on operand size.
'pd', # 128 bit or 256 bit double-precision fp data.
'ps', # 128 bit or 256 bit single-prevision fp data.
'q', # Always 1 QWORD.
'qq', # Always 4 QWORDs.
's', # 6-byte or 10-byte pseudo-descriptor.
'sd', # Scalar element of 128 bit double-precision fp data.
'ss', # Scalar element of 128 bit single-precision fp data.
'v', # WORD, DWORD or QWORD, depending on operand size.
'w', # Always WORD.
'x', # 128 bit, 256 bit, depending on operand size.
'y', # DWORD or QWORD, depending on operand size.
'yf', # Always QWORD in 64 bit mode and DWORD in 16/32 bit mode.
'z', # WORD for 16 bit op size, DWORD for 32 & 64 bit operand size.
'?', # Unknown operand size. Depends on many factors (for example, XSAVE).
'0', # Used for instructions that do not actually access any memory.
'asz', # The size of the operand is given by the current addressing mode.
'ssz', # The size of the operand is given by the current stack mode.
'fa', # FPU integer binary coded decimal.
'fw', # FPU real word.
'fd', # FPU real dword.
'fq', # FPU real qword.
'ft', # FPU real extended.
'fe', # FPU environment.
'fs', # FPU state.
'l', # Either a 64 bit or a 128 bit operand size (used by BNDMOV).
'rx', # 512 bytes extended state.
'cl', # 32/64/128 bytes - the size of one cache line.
'12', # 4 bytes (0) + 8 bytes (old SSP), used by SAVEPREVSSP.
't', # A tile register. The size varies dependning on execution environment, but can be as high as 1K.
]
# Implicit/fixed operands. Self explanatory.
valid_impops = {# register size
'AH' : ('AH', 'b'), # AH register.
'AL' : ('rAX', 'b'), # AL register.
'AX' : ('rAX', 'w'), # AX register.
'EAX' : ('rAX', 'd'), # EAX register.
'RAX' : ('rAX', 'q'), # RAX register.
'eAX' : ('rAX', 'z'), # AX or EAX register, depending on op size.
'rAX' : ('rAX', 'v'), # AX, EAX or RAX register, depending on op size.
'yAX' : ('rAX', 'y'), # EAX or RAX register, depending on op size.
'CL' : ('rCX', 'b'), # CL register.
'ECX' : ('rCX', 'd'), # ECX register.
'RCX' : ('rCX', 'q'), # RCX register.
'eCX' : ('rCX', 'z'), # CX or ECX register.
'rCX' : ('rCX', 'v'), # CX, ECX or RCX register, depending on op size.
'yCX' : ('rCX', 'y'), # ECX or RCX register, depending on op size.
'aCX' : ('rCX', 'asz'), # CX, ECX or RCX register, depedning on address size.
'DX' : ('rDX', 'w'), # DX register.
'EDX' : ('rDX', 'd'), # EDX register.
'RDX' : ('rDX', 'q'), # RDX register.
'eDX' : ('rDX', 'z'), # DX or EDX register, depending on op size.
'rDX' : ('rDX', 'v'), # DX, EDX or RDX register, depending on op size.
'yDX' : ('rDX', 'y'), # EDX or RDX register, depending on op size.
'EBX' : ('rBX', 'd'), # EBX register.
'RBX' : ('rBX', 'q'), # RBX register.
'rBX' : ('rBX', 'v'), # BX, EBX or RBX register, depending on op size.
'yBX' : ('rBX', 'y'), # EBX or RBX register, depending on op size.
'rBP' : ('rBP', 'v'), # BP, EBP or RBP register, depending on op size.
'sBP' : ('rBP', 'ssz'), # BP, EBP or RBP register, depending on stack size.
'rSP' : ('rSP', 'v'), # SP, ESP or RSP register, depending on op size.
'sSP' : ('rSP', 'ssz'), # SP, ESP or RSP register, depending on stack size.
'aSI' : ('rSI', 'asz'), # SI, ESI, or RSI register, depending on address size.
'aDI' : ('rDI', 'asz'), # DI, EDI, or RDI register, depending on address size.
'R11' : ('rR11', 'q'), # R11 register.
'rIP' : ('rIP', 'v'), # IP, EIP or RIP, depending on op size.
'1' : ('1', 'b'), # Constant 1.
'XMM0' : ('XMM0', 'dq'), # XMM0 register.
'ST(0)' : ('ST(0)', 'ft'), # ST(0) register.
'ST(i)' : ('ST(i)', 'ft'), # ST(1) register.
'CS' : ('CS', 'v'), # CS register.
'SS' : ('SS', 'v'), # SS register.
'DS' : ('DS', 'v'), # DS register.
'ES' : ('ES', 'v'), # ES register.
'FS' : ('FS', 'v'), # FS register.
'GS' : ('GS', 'v'), # GS register.
'CR0' : ('CR0', 'yf'), # CR0 register.
'XCR' : ('XCR', 'q'), # An XCR register.
'XCR0' : ('XCR0', 'q'), # XCR0 register.
'MSR' : ('MSR', 'q'), # A MSR.
'TSC' : ('TSC', 'q'), # TSC register.
'TSCAUX' : ('TSCAUX', 'q'), # TSXAUX register.
'SCS' : ('SCS', 'q'), # IA32_SYSNETER_CS register.
'SEIP' : ('SEIP', 'q'), # IA32_SYSENTER_EIP register.
'SESP' : ('SESP', 'q'), # IA32_SYSENTER_ESP register.
'FSBASE' : ('FSBASE', 'q'), # IA32_FS_BASE register.
'GSBASE' : ('GSBASE', 'q'), # IA32_GS_BASE register.
'KGSBASE' : ('KGSBASE', 'q'), # IA32_KERNEL_GS_BASE register.
'STAR' : ('STAR', 'q'), # IA32_STAR register.
'LSTAR' : ('LSTAR', 'q'), # IA32_LSTAR register.
'FMASK' : ('FMASK', 'q'), # IA32_FMASK register.
'GDTR' : ('GDTR', 's'), # GDT register.
'IDTR' : ('IDTR', 's'), # IDT register.
'LDTR' : ('LDTR', 'w'), # LDT register.
'TR' : ('TR', 'w'), # Task register.
'BANK' : ('BANK', '?'), # A register bank.
'X87CONTROL':('X87CONTROL', 'w'), # X87 control register.
'X87TAG' : ('X87TAG', 'w'), # X87 tag register.
'X87STATUS': ('X87STATUS', 'w'), # X87 status register.
'MXCSR' : ('MXCSR', 'd'), # MXCSR register.
'PKRU' : ('PKRU', 'd'), # PKRU register.
'SSP' : ('SSP', 'yf'), # Shadow stack pointer. 32 bit in protected/compat mode, 64 in long mode.
# Implicit memory operands.
'pBXALb' : ('pBXAL', 'b'), # Implicit [RBX + AL], as used by XLAT.
'pDIq' : ('pDI', 'q'), # Implicit qword [RDI].
'pDIdq' : ('pDI', 'dq'), # Implicit xmmword [RDI].
# Implicit shadow stack accesses.
'SHS' : ('SHS', 'q'), # Shadow stack (SSP) implicit access, 1 qword (use by CET instructions).
'SHS0' : ('SHS0', 'q'), # Shadow stack (IA32_PL0_SSP) implicit access, 1 qword (use by CET instructions).
'SHSI' : ('SHS', 'v2'), # Shadow stack load & discard, 2 elements (INCCSPD/INCSSPQ).
'SHSS' : ('SHS', '12'), # Shadow stack read & store 4 + 8 bytes (SAVEPREVSSP).
'SHS1' : ('SHSP', 'v'), # Shadow stack push/pop, 1 word.
'SHS2' : ('SHSP', 'v2'), # Shadow stack push/pop, 2 words.
'SHS3' : ('SHSP', 'v3'), # Shadow stack push/pop, 3 words.
'SHS4' : ('SHSP', 'v4'), # Shadow stack push/pop, 4 words.
}
# If an operand type is not present here, than that operand is implicit & it's not encoded inside the instruction.
operand_encoding = {
'A' : 'D', # Immediate, encoded directly in the instruction bytes.
'B' : 'V', # VEX/EVEX.vvvv encoded general purpose register.
'C' : 'R', # Modrm.reg encoded control register.
'D' : 'R', # Modrm.reg encoded debug register.
'E' : 'M', # Modrm.rm encoded general purpose register or memory.
'G' : 'R', # Modrm.reg encoded general purpose register.
'H' : 'V', # VEX/EVEX.vvvv encoded vector register.
'I' : 'I', # Immediate, encoded directly in the instruction bytes.
'J' : 'D', # Relative offset, encoded directly in the instruction bytes.
'L' : 'L', # Register encoded in an immediate.
'M' : 'M', # Modrm.rm encoded memory.
'N' : 'M', # Modrm.rm encoded MMX register.
'O' : 'D', # Absolute memory encoded directly in the instruction.
'P' : 'R', # Modrm.reg encoded MMX register.
'Q' : 'M', # Modrm.rm encoded MMX register or memory.
'R' : 'M', # Modrm.rm encoded general purpose register.
'S' : 'R', # Modrm.reg encoded segment register.
'T' : 'R', # Modrm.reg encoded test register.
'U' : 'M', # Modrm.rm encoded vector register.
'V' : 'R', # Modrm.reg encoded vector register.
'W' : 'M', # Modrm.rm encoded vector register or memory.
'Z' : 'O', # General purpose register encoded in opcode low 3 bit.
'rB' : 'R', # Modrm.reg encoded bound register.
'mB' : 'M', # Modrm.rm encoded bound register or memory.
'rK' : 'R', # Modrm.reg encoded mask register.
'vK' : 'V', # VEX/EVEX.vvvv encoded mask register.
'mK' : 'M', # Modrm.rm encoded mask register or memory.
'aK' : 'A', # EVEX.aaa encoded mask register.
'mR' : 'R', # Modrm.reg encoded memory.
'mM' : 'M', # Modrm.rm encoded memory (always).
'1' : '1', # Constant 1.
'CL' : 'C', # CL register.
'ST(i)' : 'M', # Modrm.rm encoded FPU register.
}
valid_prefixes = [
'REP', # Rep prefix is accepted.
'REPC', # Conditional rep prefix is accepted.
'HLE', # Hardware Lock Elision accepted.
'BND', # Bound prefix accepted (MPX).
'LOCK', # Lock prefix accepted.
'BH', # Branch hints accepted.
'XACQUIRE', # Xacquire prefix accepted.
'XRELEASE', # Xrelease prefix accepted.
'HLEWOL', # HLE prefix is accepted without lock - used by MOV instructions.
'DNT', # Do Not Track prefix accepted (CET).
]
valid_access = [
'N', # No access.
'R', # Read.
'W', # Write.
'CR', # Conditional read.
'CW', # Conditional write.
'RW', # Read-Write.
'CRW', # Conditional Read-Write.
'RCW', # Read-Conditional Write.
'CRCW', # Conditional Read-Conditional Write.
]
valid_flags = [
'CF', # Carry.
'PF', # Parity.
'AF', # Auxiliary.
'ZF', # Zero.
'SF', # Sign.
'TF', # Trap.
'IF', # Interrupt.
'DF', # Direction.
'OF', # Overflow.
'IOPL', # I/O privilege level.
'NT', # Nested Task.
'RF', # Resume Flag.
'VM', # V8086 mmode.
'AC', # Alignment Check.
'VIF', # Virtual IF.
'VIP', # Virtual IP.
'ID' # CPUID ID flag.
]
valid_flag_op = [
'm', # modified.
't', # tested.
'0', # cleared.
'1', # set.
'u', # undefined.
'n', # not accessed.
]
valid_cpu_modes = [
'r0', # Ring 0.
'r1', # Ring 1.
'r2', # Ring 2.
'r3', # Ring 3.
'real', # Real mode.
'v8086', # V8086 mode.
'prot', # Protected mode.
'compat', # Compatibility mode.
'long', # Long mode.
'smm', # System Management Mode.
'sgx', # Software Guard Extensions SGX enclave.
'tsx', # Transactional Synchronization Extensions.
'vmxr', # VMX root.
'vmxn', # VMX non-root.
'vmxo', # Outside VMX operation.
]
valid_mode_groups = [
"ring",
"mode",
"vmx",
"other",
]
valid_ring_modes = [
"r0",
"r1",
"r2",
"r3",
]
valid_mode_modes = [
"real",
"smm",
"v8086",
"prot",
"compat",
"long",
]
valid_vmx_modes = [
"vmxr",
"vmxn",
"vmxo",
]
valid_other_modes = [
"sgx",
"tsx",
]
valid_mode_map = {
"ring" : valid_ring_modes,
"mode" : valid_mode_modes,
"vmx" : valid_vmx_modes,
"other" : valid_other_modes,
}
valid_decorators = [
'{K}', # Masking support.
'{z}', # Zeroing support.
'{sae}', # Surpress All Exceptions.
'{er}', # Embedded Rounding.
'|B32', # Broadcast 32.
'|B64', # Broadcast 64.
]
valid_tuples = [
'fv', # Full Vector, Load+Op (Full Vector Dword/Qword).
'hv', # Half Vector, Load+Op (Half Vector).
'fvm', # Full Vector Memory, Load/store or subDword full vector.
'hvm', # Half Vector Memory, SubQword Conversion.
'qvm', # Quarter Vector Memory, SubDword Conversion.
'ovm', # Oct Vector Memory, SubWord Conversion.
'dup', # Dup, VMOVDDUP.
'm128', # Mem 128, Shift count from memory.
't1s8', # Tuple 1 Scalar, 8 bit, 1Tuple less than Full Vector.
't1s16', # Tuple 1 Scalar, 16 bit, 1Tuple less than Full Vector.
't1s', # Tuple 1 Scalar, 32/64 bit, 1Tuple less than Full Vector.
't1f', # Tuple 1 Fixed, 1 Tuple memsize not affected by EVEX.W.
't2', # Tuple 2, Broadcast (2 elements).
't4', # Tuple 4, Broadcast (4 elements).
't8', # Tuple 8, Broadcast (8 elements).
't1_4x',
]
class InvalidEncodingException(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)
class ParseLineException(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)
def reverse_dict(d):
r = {}
for k in d:
r[d[k]] = k
return r
def my_str(x):
if x is None:
return x
else:
return str(x)
#
# CPUID feature flags.
#
class CpuidFeatureFlag():
def __init__(self, finfo):
self.Name = finfo["name"]
self.Leaf = finfo["leaf"]
self.SubLeaf = finfo["subleaf"]
self.Reg = finfo["reg"]
self.Bit = finfo["bit"]
def __str__(self):
return "%s: %s, %s, %s, %s" % (self.Name, self.Leaf, self.SubLeaf, self.Reg, self.Bit)
#
# Operand description
#
class Operand():
def __init__(self, op, access, flags, imp = False):
self.Raw = op
self.Type = 0
self.Size = 0
self.Flags = flags
self.Decorators = []
self.Access = []
self.Block = 0
self.Encoding = 'S'
self.Implicit = imp
orig = op
# Handle block registers.
if op.endswith('+3'):
self.Block = 4
op = op.replace('+3', '')
elif op.endswith('+1'):
self.Block = 2
op = op.replace('+1', '')
# Handle the decorators.
for dec in valid_decorators:
if -1 != op.find(dec):
# Found decorator.
self.Decorators.append(dec)
# Remove it from the opstring.
op = op.replace(dec, "")
# Handle hard-coded operators - those that are implicit/are not encoded anywhere.
if op in valid_impops:
self.Type, self.Size = valid_impops[op][0], valid_impops[op][1]
# Now handle explicit operators.
else:
# Attempt a match inside the explicit operands map.
for opt in valid_optype:
if op.startswith(opt):
self.Type = opt
op = op.replace(opt, "")
break
# Now the operand size. After parsing the decorator and the operand type, we should be left with
# the operand size only.
if self.Type in ['rK', 'mK', 'vK', 'aK'] and not op in valid_opsize:
self.Size = 'q'
elif op in valid_opsize:
self.Size = op
else:
raise InvalidEncodingException('Invalid operand size specified: ' + orig)
if self.Type in operand_encoding:
self.Encoding = operand_encoding[self.Type]
elif self.Raw in operand_encoding:
self.Encoding = operand_encoding[self.Raw]
if imp and 'OPDEF' not in self.Flags:
self.Flags.append('OPDEF')
self.Access = access
def __str__(self):
if True:
return self.Raw
#
# Prefixes.
#
class Prefix():
def __init__(self, prefix):
self.Mnemonic = prefix["mnemonic"]
self.Encoding = prefix["encoding"]
def __str__(self):
return self.Mnemonic
#
# Instructions.
#
class Instruction():
def __init__(self, iinfo):
# Fill in raw instruction information
self.Mnemonic = iinfo["mnemonic"]
self.RawEnc = iinfo["encoding"]
self.Flags = iinfo["flags"]
self.Prefmap = iinfo["prefixes"]
self.Set = iinfo["set"]
self.Category = iinfo["cat"]
self.Class = iinfo["class"]
self.Rwm = iinfo["rwm"]
self.Id = iinfo["cff"] or self.Set
self.Tuple = iinfo["tuple"]
self.ExClass = iinfo["exclass"]
self.RevFlagsAccess = iinfo["flgaccess"]
self.Modes = iinfo["modes"]
self.FpuFlags = iinfo["fpuflg"]
# First redirecton class: opcodes
self.Opcodes = []
self.Prefixes = []
self.DecoFlags = []
# Second redirection class: Modrm
self.HasModrm = self.ModrmRedirAfterMpref = False
self.Mod = self.Reg = self.Rm = None
# Third redirection class: mandatory prefix.
self.Np = self.MustHave66 = self.MustHaveF2 = self.MustHaveF3 = False
# Fourth redirection class: operating mode
self.RedM16 = self.RedM32 = self.RedM64 = False
# Fifth redirection class: default operand size
self.RedDs16 = self.RedDs32 = self.RedDs64 = self.RedDDs64 = self.RedFDs64 = False
# Sixth redirection class: default address size
self.RedAs16 = self.RedAs32 = self.RedAs64 = False
# Seventh redirecton class: rex, rex.w, rep, repz
self.RedRex = self.RedRexW = self.RedRep = self.Red64 = self.RedF3 = False
# Misc - vendor
self.Vendor = None
# XOP, VEX and EVEX classes.
self.Vex = self.Xop = self.Evex = self.Mvex = False
self.M = self.P = self.L = self.W = None
# Now parse each info chunk and extract the actual data
for t in iinfo["encoding"].split(' '):
if '0x66' == t and not self.Opcodes and not (self.Xop or self.Vex or self.Evex):
self.Prefixes.append(0x66)
self.MustHave66 = True
elif '0xF3' == t and not self.Opcodes and not (self.Xop or self.Vex or self.Evex):
self.Prefixes.append(0xF3)
self.MustHaveF3 = True
elif '0xF2' == t and not self.Opcodes and not (self.Xop or self.Vex or self.Evex):
self.Prefixes.append(0xF2)
self.MustHaveF2 = True
elif 'NP' == t:
self.Np = True
elif 'a0xF3' == t:
self.Prefixes.append(0xF3)
self.RedF3 = True
elif 'o64' == t:
self.Red64 = True
elif 'rexw' == t:
self.RedRexW = True
elif 'rex' == t:
self.RedRex = True
elif 'rep' == t:
self.RedRep = True
elif 'ds16' == t:
self.RedDs16 = True
elif 'ds32' == t:
self.RedDs32 = True
elif 'ds64' == t:
self.RedDs64 = True
elif 'dds64' == t:
self.RedDDs64 = True
elif 'fds64' == t:
self.RedFDs64 = True
elif 'as16' == t:
self.RedAs16 = True
elif 'as32' == t:
self.RedAs32 = True
elif 'as64' == t:
self.RedAs64 = True
elif t.startswith('/'):
self.HasModrm = True
self.Flags.append('MODRM')
if t.endswith(':mem'):
self.Mod = 'mem'
if t.endswith('reg'):
self.Mod = 'reg'
t = t.replace(':mem', '').replace(':reg', '')
for i in range(0, 8):
if '/%d' % i == t:
self.Reg = i
if re.match(r'0x[0-9a-fA-F]{2}', t[1:]):
mrm = int(t[1:], 16)
if 0xC0 == (mrm & 0xC0):
self.Mod = 'reg'
else:
self.Mod = 'mem'
self.Rm = mrm & 7
self.Reg = (mrm >> 3) & 7
elif 'modrm' == t:
self.HasModrm = True
self.Flags.append('MODRM')
elif t.startswith('mod:'):
self.Mod = t[4:]
if self.Mod not in ['mem', 'reg']:
raise InvalidEncodingException('Invalid encoding: illegal "mod" modifier')
elif t.startswith('reg:'):
self.Reg = t[4:]
if self.Reg not in ['0', '1', '2', '3', '4', '5', '6', '7']:
raise InvalidEncodingException('Invalid encoding: illegal "reg" value')
self.Reg = int(self.Reg)
elif t.startswith('rm:'):
self.Rm = t[3:]
if self.Rm not in ['0', '1', '2', '3', '4', '5', '6', '7']:
raise InvalidEncodingException('Invalid encoding: illegal "rm" value')
self.Rm = int(self.Rm)
elif t.startswith('modrmpmp'):
self.ModrmRedirAfterMpref = True
elif t == 'xop':
self.Xop = True
elif t == 'vex':
self.Vex = True
elif t == 'evex':
self.Evex = True
elif t == 'mvex':
self.Mvex = True
elif t.startswith('m:'):
self.M = t[2:]
if self.M not in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C']:
raise InvalidEncodingException('Invalid encoding: illegal "mmmmm" value')
self.M = int(self.M, 16)
elif t.startswith('p:'):
self.P = t[2:]
if not self.P in ['0', '1', '2', '3']:
raise InvalidEncodingException('Invalid encoding: illegal "pp" value!')
self.P = int(self.P)
elif t.startswith('l:'):
self.L = t[2:]
if self.L == '128':
self.L = 0
elif self.L == '256':
self.L = 1
elif self.L == '512':
self.L = 2
elif self.L == 'x':
self.L = None
elif self.L == 'i':
self.L = None
if 'LIG' not in self.Flags:
self.Flags.append('LIG')
elif self.L in ['0', '1', '2', '3']:
self.L = int(self.L)
else:
raise InvalidEncodingException('Invalid encoding: illegal "l" value!')
elif t.startswith('w:'):
self.W = self.RawW = t[2:]
if self.W == 'x':
self.W = None
elif self.W == 'i':
self.W = None
if 'WIG' not in self.Flags:
self.Flags.append('WIG')
elif self.W in ['0', '1']:
self.W = int(self.W)
else:
raise InvalidEncodingException('Invalid encoding: illegal "w" value!')
elif re.match(r'0x[0-9a-fA-F]{2}', t):
self.Opcodes.append(int(t, 16))
elif t in ['intel', 'amd', 'via', 'cyrix']:
self.Vendor = t
elif 'vsib' == t:
self.HasVsib = True
if 'VSIB' not in self.Flags:
self.Flags.append('VSIB')
elif 'mib' == t:
self.HasMib = True
if 'MIB' not in self.Flags:
self.Flags.append('MIB')
elif 'bitbase' == t:
self.HasBitbase = True
if 'BITBASE' not in self.Flags:
self.Flags.append('BITBASE')
elif 'sibmem' == t:
self.HasSibMem = True
if 'SIBMEM' not in self.Flags:
self.Flags.append('SIBMEM')
elif t in ['ib', 'iw', 'iz', 'iv', 'id', 'cb', 'cz', 'cv', 'cp', 'is4']:
# Not used for now, but they must be specified, for a complete instruction encoding specification.
pass
elif t.startswith('evex.'):
tokens2 = t.split('.')
self.Evex = True
self.M = self.P = self.L = self.W = 0
for t2 in tokens2[1:]:
# Handle the L specifier
if t2 == 'LIG':
self.L = None
if 'LIG' not in self.Flags:
self.Flags.append('LIG')
elif t2 == 'LANY':
self.L = None
elif t2 == '128' or t2 == 'LZ' or t2 == 'L0':
self.L = 0
elif t2 == '256' or t2 == 'L1':
self.L = 1
elif t2 == '512' or t2 == 'L2':
self.L = 2
# Handle the W specifier
elif t2 == 'WIG':
self.W = None
if 'WIG' not in self.Flags:
self.Flags.append('WIG')
elif t2 == 'WANY':
self.W = None
elif t2 == 'W0':
self.W = 0
elif t2 == 'W1':
self.W = 1
# Handle compressed prefix
elif t2 == '66':
self.P = 1
elif t2 == 'F3':
self.P = 2
elif t2 == 'F2':
self.P = 3
# Handle opcode map
elif t2 == '0F':
self.M = 1
elif t2 == '0F38':
self.M = 2
elif t2 == '0F3A':
self.M = 3
elif t2 in ['NDS', 'NDD', 'DDS']:
pass
else:
raise InvalidEncodingException('Unknwon new evex token: %s/%s' % (t, t2))
else:
raise InvalidEncodingException('Unknown token: %s' % t)
# Pre-process the explicit operands. The mask register is contained as a decorator, but put it as a direct
# operand as well. The access flag is already present in rwm.
if len(iinfo["expops"]) >= 1 and iinfo["expops"][0].find("{K") > 0:
iinfo["expops"].insert(1, 'aKq')
# Parse the explicit instruction operands.
self.ExpOps = self.process_operands(iinfo["expops"], False)
# Parse the implicit instruction operands.
self.ImpOps = self.process_operands(iinfo["impops"], True)
# Post-process the operands. We fill up the flags with additional info based on the operands.
for op in self.ExpOps:
for deco in op.Decorators:
self.DecoFlags.append({'{K}':'MASK', '{z}':'ZERO', '{sae}':'SAE', '{er}':'ER', '|B32':'BROADCAST', '|B64':'BROADCAST'}[deco])
if op.Type in ['U', 'V', 'W', 'H', 'L'] and 'VECT' not in self.Flags:
self.Flags.append('VECT')
# VEX, XOP, EVEX and MVEX instructions are not valid in real or v8086 modes.
if self.Vex or self.Xop or self.Evex or self.Mvex:
if 'real' in self.Modes:
self.Modes.remove('real')
if 'v8086' in self.Modes:
self.Modes.remove('v8086')
if 'long' not in self.Modes and 'II64' not in self.Flags:
self.Flags.append('II64')
if 'long' in self.Modes and 'prot' not in self.Modes and 'O64' not in self.Flags:
self.Flags.append('O64')
# Split the instruction into encoding entities.
e = self.split_encoding()
if self.Vex or self.Xop or self.Evex:
self.Spec = { "mmmmm" : e[0], "opcodes" : e[1], "modrm" : e[2], "pp" : e[3], "l" : e[4], "w" : e[5] }
else:
self.Spec = { "opcodes" : e[0], "modrm" : e[1], "mpre" : e[2], "mode" : e[3], "dsize" : e[4], \
"asize" : e[5], "opre" : e[6], "vendor" : e[7] }
def process_operands(self, ops, imp = False):
p = 1
res = []
for op in ops:
if op == "nil":
break
flags = []
if not imp:
for f in self.Flags:
if f.startswith('OP%d' % p):
flags.append('OP' + f[3:])
self.Flags.remove(f)
else:
flags.append('OPDEF')
if not imp:
res.append(Operand(op, self.Rwm[p - 1], flags, imp))
else:
res.append(Operand(op, self.Rwm[len(self.ExpOps) + p - 1], flags, imp))
p += 1
return res
def split_encoding(self):
if self.Vex or self.Xop or self.Evex or self.Mvex:
return self.split_encoding_vex()
else:
return self.split_encoding_legacy()
def split_encoding_vex(self):
# First, get the 'mmmmm' - VEX decoding table.
mmmmm = '%x' % self.M
# Now get the opcode. Should be only one.
opcodes = ['%02x' % x for x in self.Opcodes]
# Get the modrm redirections.
modrm = { "mod": self.Mod, "reg": my_str(self.Reg), "rm": my_str(self.Rm), "modpost": None }
# Get the pp, if any.
pp = my_str(self.P)
# Get the l, if any.
l = my_str(self.L)
# Get the w, if any.
w = my_str(self.W)
return (mmmmm, opcodes, modrm, pp, l, w)
def split_encoding_legacy(self):
# First redirection class, the opcode.
opcodes = ['%02x' % x for x in self.Opcodes]
# Second redirection class, modrm
modrm = { "mod": self.Mod, "reg": my_str(self.Reg), "rm": my_str(self.Rm), "modpost": None }
# Third redirection class, mandatory prefixes
mprefixes = []
if self.MustHaveF2:
mprefixes.append('F2')
if self.MustHaveF3:
mprefixes.append('F3')
if self.MustHave66:
mprefixes.append('66')
if self.Np:
mprefixes.append('NP')
if len(mprefixes) == 0 and (not (self.Xop or self.Vex or self.Evex or self.Mvex)) and\
(self.Opcodes[0] == 0x0F and self.Opcodes[1] in [0x3A, 0x38]):
mprefixes.append(None)
# Fourth redirection class, operating mode.
mode = []
if self.RedM16:
mode.append('m16')
elif self.RedM32:
mode.append('m32')
elif self.RedM64:
mode.append('m64')
# Fifth redirection class, default operand size.
dsize = []
if self.RedDs16:
dsize.append('ds16')
elif self.RedDs32:
dsize.append('ds32')
elif self.RedDs64:
dsize.append('ds64')
elif self.RedDDs64:
dsize.append('dds64')
elif self.RedFDs64:
dsize.append('fds64')
# Sixth redirection class, default address size.
asize = []
if self.RedAs16:
asize.append('as16')
elif self.RedAs32:
asize.append('as32')
elif self.RedAs64:
asize.append('as64')
# Seventh redirection class, REX prefix, REX.W, 64 bit mode, 0xF3, SIB. The important aspect here is that unlike
# the other classes, this is not exhaustive - if an instruction does not fit in any of the entries, it
# will default to index 0 (and it will not return invalid encoding, unless entry 0 is invalid).
oprefixes = []
if self.RedRex:
oprefixes.append('rex')
if self.RedRexW:
oprefixes.append('rexw')
if self.Red64:
oprefixes.append('64')
if self.RedF3:
oprefixes.append('aF3')
if self.RedRep:
oprefixes.append('rep')
# Vendor redirection, if any.
return (opcodes, modrm, mprefixes, mode, dsize, asize, oprefixes, self.Vendor)
def __str__(self):
# Get the operands
ops = ''
for o in self.ExpOps:
ops += o.__str__() + ','
ops = ops[:-1]
# Return a text reprezentation of the encoding
return (self.Mnemonic + ' ' + ops).strip()
def parse_entry(entry, template_flags = {}, template_cpuid = {}, template_modes = {}):
# make sure this is not a comment. Skip comments.
if entry.startswith('#') or len(entry) < 4: return None
try:
# Preprocess: remove comments, CR/LF
com = entry.find('#')
x = entry.replace('\x0D', '').replace('\x0A', '')
if -1 != com: x = entry[:com]
# Space can't be the first character.
if x[0] == ' ':
raise ParseLineException('Space cannot be the first character!')
# Extract the mnemonic
mnemonic = x[0:x.find(' ')].strip()
# Extract the explicit operands
x = x[x.find(' '):].strip()
expops = x[:x.find(' ')].split(',')
if len(expops) == 1 and expops[0] == 'nil': expops = []
# Extract the implicit operands
x = x[x.find(' '):].strip()
impops = x[:x.find(' ')].split(',')
if len(impops) == 1 and impops[0] == 'nil': impops = []
# Extract the encoding
x = x[x.find('[')+1:]
encoding = x[:x.find(']')].strip()
# Extract the flags, class, set, category, encoding, prefmap
attributes = prefmap = isaset = category = iclass = adop = rwm = None
cff = tuple = flgaccess = modes = exclass = fpuflg = None
x = x[x.find(']')+1:].strip()
while x:
start = x.find(':')
end = x.find(',')
if start == -1:
break
if end == -1:
end = len(x)
token = x[:start].strip()
value = x[start+1:end].strip()
# parse token
if token == 'a': # Instruction attributes.
attributes = value.split('|')
elif token == 'p': # Accepted prefixes.
prefmap = value.split('|')
elif token == 's': # Instruction set
isaset = value
elif token == 't': # Instruction type
category = value
elif token == 'c': # Instruction class. Defaults to the mnemonic if not specified.
iclass = value
elif token == 'w': # Read/write map
rwm = value.split('|')
elif token == 'i': # CPUID.
cff = value
elif token == 'l': # tuple
tuple = value
elif token == 'e':
exclass = value
elif token == 'f': # Flags access
flgaccess = []
for v in value.split('|'):
if v in template_flags:
flgaccess += template_flags[v].split('|')
else:
flgaccess.append(v)
elif token == 'u':
fpuflg = ['u', 'u', 'u', 'u'] # each one is undefined.
for v in value.split('|'):
flg, acc = v.split('=')
if flg not in ['C0', 'C1', 'C2', 'C3']:
raise ParseLineException('Unknown FPU flag: %s' % flg)
if acc not in ['0', '1', 'm', 'u']:
raise ParseLineException('Unknown FPU flag access: %s' % acc)
fpuflg[int(flg[1])] = acc
elif token == 'm': # CPU modes.
# Example: m:ring=0,1,2,3|vmx=root,nonroot|mode=real,v8086,smm,prot,compat,long|other=sgx,tsx
# Note: any group that is not specified is considered entirely valid
# Note: any group that is specified overrides all the other fields in the group; example:
# mode=real - this means the instruction is valid ONLY in real mode.
# mode=!v8086 - this means the instructiom is valid is ANY mode except for V8086
tmodes = []
for t in value.split('|'):
if t in template_modes:
tmodes += template_modes[t].split('|')
else:
tmodes.append(t)
modes = []
groups = {}
for g in valid_mode_groups:
groups[g] = {}
groups[g]["negated"] = False
groups[g]["specified"] = False
groups[g]["modes"] = []
for tm in tmodes:
m, v = tm.split('=')
for vx in v.split('+'):
negated = False
if vx.startswith('!'):
vx = vx[1:]
groups[m]["negated"] = True
if m not in valid_mode_groups:
raise ParseLineException('Unknown CPU mode group specified: %s' % m)
if vx not in valid_mode_map[m]:
raise ParseLineException('Mode %s is not valid for mode group %s; it can be one of [%s]' %
(vx, m, ','.join(valid_mode_map[m])))
groups[m]["specified"] = True
groups[m]["modes"].append(vx)
for g in groups:
if not groups[g]["specified"]:
modes += valid_mode_map[g]
elif not groups[g]["negated"]:
modes += groups[g]["modes"]
else:
modes += [x for x in valid_mode_map[g] if x not in groups[g]["modes"]]
else:
raise ParseLineException('Unknown token specified: %s' % token)
# Advance
if -1 == x.find(','):
x = ''
else:
x = x[x.find(',')+1:].strip()
if attributes is None:
attributes = []
if prefmap is None:
prefmap = []
if isaset is None:
isaset = 'UNKNOWN'
if category is None:
category = 'UNKNOWN'
if iclass is None:
iclass = mnemonic
if rwm is None:
rwm = []
if cff is None:
cff = None
if modes is None:
# No mode specified, assume validity in all modes.
modes = []
modes += valid_cpu_modes
if flgaccess is None:
flgaccess = []
if fpuflg is None:
# fpuflg[x] is for Cx (fpuflg[0] = C0, fpuflg[1] = C1, etc.)
# u = undefined, m = modified, 0 = cleared to 0, 1 = set to 1.
fpuflg = ['u', 'u', 'u', 'u']
# Validate the tokens.
# The set can be anything.
# The type can be anything.
# The iclass can be missing, it will default to the mnemonic.
# The read/write map must have the same size as the number of operands.
if len(rwm) < len(expops) + len(impops):
raise ParseLineException('Invalid number of operand access specifiers: provided %d, expecting at least %d' %
(len(rwm), len(expops) + len(impops)))
for r in rwm:
if r not in valid_access:
raise ParseLineException('Unknown access specifier "%s", expecting one of [%s]' %
(r, ','.join(valid_access)))
# The CPUID can be anything, even if it doesn't match something specified in cpuid.dat.
# The modes must be one of the valid modes.
for m in modes:
if m.startswith('!'):
m = m[1:]
if m not in valid_cpu_modes:
raise ParseLineException('Unknown CPU mode specifier "%s", expecting one of [%s]' %
(m, ','.join(valid_cpu_modes)))
# Validate the prefixes.
for p in prefmap:
if p not in valid_prefixes:
raise ParseLineException('Unknown prefix specifier "%s", expecting one of [%s]' %
(p, ','.join(valid_prefixes)))
# Validate the tuples.
if tuple and tuple not in valid_tuples:
raise ParseLineException('Unknown tuple specifier "%s", expecting one of [%s]' %
(tuple, ','.join(valid_tuples)))
# Validate the attributes.
for a in attributes:
if a not in valid_attributes:
raise ParseLineException('Unknown attribute specifier "%s", expecting one of [%s]' %
(a, ','.join(valid_attributes)))
# Validate the flags.
revflg = {}
for m in valid_flag_op:
revflg[m] = []
for flg in flgaccess:
f, m = flg.split('=')
if m not in valid_flag_op:
raise ParseLineException('Unknow flag access specifier "%s", expecting one of [%s]' %
(m, ','.join(valid_flag_op)))
if f not in valid_flags:
raise ParseLineException('Unknow flag specifier "%s", expecting one of [%s]' %
(f, ','.join(valid_flas)))
revflg[m].append(f)
flgaccess = revflg
iinfo = {
"mnemonic" : mnemonic, # Mnemonic
"expops" : expops, # Explicit operands
"impops" : impops, # Implicit operands
"encoding" : encoding, # Encoding
"flags" : attributes, # Instruction attributes
"prefixes" : prefmap, # Accepted prefixes
"set" : isaset, # Instruction set
"cat" : category, # Instruction category
"class" : iclass, # Instruction class
"rwm" : rwm, # Read/write operands map
"cff" : cff, # CPUID feature flag
"tuple" : tuple, # Tuple type, for EVEX instruxtions
"exclass" : exclass, # Exception class, for SSE/VEX/EVEX instructions
"flgaccess" : flgaccess, # RFLAGS access
"modes" : modes, # Valid operating modes
"fpuflg" : fpuflg, # FPU flags access (C0, C1, C2, C3), valid for x87 instructions only
}
if 'PREFIX' in attributes:
return None
try:
ins = Instruction(iinfo)
except:
raise
except Exception as e:
raise
return ins
def parse_ins_file(fpath, template_flags = {}, template_cpuid = {}, template_modes = {}):
instructions = []
lcount = 0
for line in open(fpath, 'rt'):
lcount += 1
try:
ins = parse_entry(line, template_flags, template_cpuid, template_modes)
if ins: instructions.append(ins)
except Exception as e:
print('ERROR: Parsing failed at %s:%d: %s' % (fpath, lcount, e))
raise
return instructions
def parse_pre_file(fpath):
prefixes = []
for line in open(fpath, 'rt'):
# Ignore comments.
if line.startswith('#'):
continue
res = re.findall(r'([^\s]+)\s*\[\s*(0x[0-9a-fA-F]+)\]', line)
if not res:
continue
res = res[0]
pref = {}
pref["mnemonic"] = res[0]
pref["encoding"] = res[1]
prefixes.append(Prefix(pref))
return prefixes
def parse_cff_file(fpath):
features = []
for line in open(fpath, 'rt'):
if line.startswith('#'):
continue
res = re.findall(r'([^\s]+)\s+:\s+(0x[0-9a-fA-F]+),\s+(0x[0-9a-fA-F]+),\s+(EAX|ECX|EDX|EBX),\s+(\d+)', line)
if not res:
continue
res = res[0]
cffi = {}
cffi["name"] = res[0]
cffi["leaf"] = res[1]
cffi["subleaf"] = res[2]
cffi["reg"] = res[3]
cffi["bit"] = res[4]
features.append(CpuidFeatureFlag(cffi))
return features
def parse_flags_file(fpath):
flags = {}
for line in open(fpath, 'rt'):
if line.startswith('#'):
continue
res = re.findall(r'([^\s]+)\s+:([^$]+)', line)
if not res:
continue
res = res[0]
flags[res[0]] = res[1].strip('\n\r ')
return flags
def parse_modess_file(fpath):
modes = {}
for line in open(fpath, 'rt'):
if line.startswith('#'):
continue
res = re.findall(r'([^\s]+)\s+:([^$]+)', line)
if not res:
continue
res = res[0]
modes[res[0]] = res[1].strip('\n\r ')
return modes
#
# =============================================================================
# Main
# =============================================================================
#
if __name__ == "__main__":
if len(sys.argv) < 2:
print('Usage: %s defs-file' % os.path.basename(sys.argv[0]))
sys.exit(-1)
# Parse the flags file.
flags = parse_flags_file('%s/flags.dat' % sys.argv[1])
# Parse the prefixes
prefixes = parse_pre_file('%s/prefixes.dat' % sys.argv[1])
# Parse the cpuid feature flags and extract each feature
features = parse_cff_file('%s/cpuid.dat' % sys.argv[1])
# Parse the modes file.
modes = parse_modess_file('%s/modes.dat' % sys.argv[1])
# Parse the instruction file and extract the instructions
instructions = []
for fn in glob.glob('%s/table*.dat' % sys.argv[1]):
instructions += parse_ins_file(fn, flags, features)
# Sort the instructions.
instructions = sorted(instructions, key = lambda x: x.Mnemonic)
for i in range(0, len(instructions)):
print(instructions[i])
for i in range(0, len(prefixes)):
print(prefixes[i])
features = sorted(features, key = lambda x: x.Name)
for i in range(0, len(features)):
print(features[i])