/* * Copyright (c) 2020 Bitdefender * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include // Main disasm header file. #include "bdshemu.h" #include "bddisasm.h" #include "disasmtool.h" const char *gSpaces[16] = { "", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", }; #if !defined(BDDISASM_HAS_VSNPRINTF) // // nd_vsnprintf // int nd_vsnprintf_s( char *buffer, size_t sizeOfBuffer, size_t count, const char *format, va_list argptr ) { return _vsnprintf_s(buffer, sizeOfBuffer, count, format, argptr); } #endif // !defined(BDDISASM_HAS_VSNPRINTF) #if !defined(BDDISASM_HAS_MEMSET) void* nd_memset(void *s, int c, size_t n) { return memset(s, c, n); } #endif // !defined(BDDISASM_HAS_MEMSET) void ShemuLog( __in PCHAR Data ) { printf("%s", Data); } bool ShemuAccessMem( __in PSHEMU_CONTEXT Ctx, __in uint64_t Gla, __in size_t Size, __inout uint8_t *Buffer, __in bool Store ) { UNREFERENCED_PARAMETER(Ctx); UNREFERENCED_PARAMETER(Gla); if (!Store) { // On loads, always return 0. memset(Buffer, 0, Size); } else { // On stores, do nothing. } return true; } const char* set_to_string( __in ND_INS_SET Set ) { switch (Set) { case ND_SET_3DNOW: return "3DNOW"; case ND_SET_ADX: return "ADX"; case ND_SET_AES: return "AES"; case ND_SET_AMD: return "AMD"; case ND_SET_AMXBF16: return "AMX-BF16"; case ND_SET_AMXFP16: return "AMX-FP16"; case ND_SET_AMXINT8: return "AMX-INT8"; case ND_SET_AMXTILE: return "AMX-TILE"; case ND_SET_AVX: return "AVX"; case ND_SET_AVX2: return "AVX2"; case ND_SET_AVX2GATHER: return "AVX2GATHER"; case ND_SET_AVX5124FMAPS: return "AVX5124FMAPS"; case ND_SET_AVX5124VNNIW: return "AVX5124VNNIW"; case ND_SET_AVX512BF16: return "AVX512BF16"; case ND_SET_AVX512BITALG: return "AVX512BITALG"; case ND_SET_AVX512BW: return "AVX512BW"; case ND_SET_AVX512CD: return "AVX512CD"; case ND_SET_AVX512DQ: return "AVX512DQ"; case ND_SET_AVX512ER: return "AVX512ER"; case ND_SET_AVX512F: return "AVX512F"; case ND_SET_AVX512IFMA: return "AVX512IFMA"; case ND_SET_AVX512PF: return "AVX512PF"; case ND_SET_AVX512VBMI: return "AVX512VBMI"; case ND_SET_AVX512VBMI2: return "AVX512VBMI2"; case ND_SET_AVX512VNNI: return "AVX512VNNI"; case ND_SET_AVX512VP2INTERSECT: return "AVX512VP2INTERSECT"; case ND_SET_AVX512VPOPCNTDQ: return "AVX512VPOPCNTDQ"; case ND_SET_AVX512FP16: return "AVX512FP16"; case ND_SET_AVXIFMA: return "AVXIFMA"; case ND_SET_AVXNECONVERT: return "AVXNECONVERT"; case ND_SET_AVXVNNI: return "AVXVNNI"; case ND_SET_AVXVNNIINT8: return "AVXVNNIINT8"; case ND_SET_BMI1: return "BMI1"; case ND_SET_BMI2: return "BMI2"; case ND_SET_CET_SS: return "CET_SS"; case ND_SET_CET_IBT: return "CET_IBT"; case ND_SET_CLDEMOTE: return "CLDEMOTE"; case ND_SET_CLFSH: return "CLFSH"; case ND_SET_CLFSHOPT: return "CLFSHOPT"; case ND_SET_CLWB: return "CLWB"; case ND_SET_CLZERO: return "CLZERO"; case ND_SET_CMPCCXADD: return "CMPCCXADD"; case ND_SET_CMPXCHG16B: return "CMPXCHG16B"; case ND_SET_CYRIX: return "CYRIX"; case ND_SET_CYRIX_SMM: return "CYRIX_SMM"; case ND_SET_ENQCMD: return "ENQCMD"; case ND_SET_F16C: return "F16C"; case ND_SET_FMA: return "FMA"; case ND_SET_FMA4: return "FMA4"; case ND_SET_FRED: return "FRED"; case ND_SET_FXSAVE: return "FXSAVE"; case ND_SET_GFNI: return "GFNI"; case ND_SET_HRESET: return "HRESET"; case ND_SET_I186: return "I186"; case ND_SET_I286PROT: return "I286PROT"; case ND_SET_I286REAL: return "I286REAL"; case ND_SET_I386: return "I386"; case ND_SET_I486: return "I486"; case ND_SET_I486REAL: return "I486REAL"; case ND_SET_I64: return "I64"; case ND_SET_I86: return "I86"; case ND_SET_INVPCID: return "INVPCID"; case ND_SET_INVLPGB: return "INVLPGB"; case ND_SET_KL: return "KL"; case ND_SET_LKGS: return "LKGS"; case ND_SET_LONGMODE: return "LONGMODE"; case ND_SET_LWP: return "LWP"; case ND_SET_LZCNT: return "LZCNT"; case ND_SET_MCOMMIT: return "MCOMMIT"; case ND_SET_MMX: return "MMX"; case ND_SET_MOVBE: return "MOVBE"; case ND_SET_MOVDIR64B: return "MOVDIR64B"; case ND_SET_MOVDIRI: return "MOVDIRI"; case ND_SET_MPX: return "MPX"; case ND_SET_MSRLIST: return "MSRLIST"; case ND_SET_MWAITT: return "MWAITT"; case ND_SET_PAUSE: return "PAUSE"; case ND_SET_PCLMULQDQ: return "PCLMULQDQ"; case ND_SET_PCONFIG: return "PCONFIG"; case ND_SET_PENTIUMREAL: return "PENTIUMREAL"; case ND_SET_PKU: return "PKU"; case ND_SET_POPCNT: return "POPCNT"; case ND_SET_PPRO: return "PPRO"; case ND_SET_PREFETCHITI: return "PREFETCHITI"; case ND_SET_PREFETCH_NOP: return "PREFETCH_NOP"; case ND_SET_PTWRITE: return "PTWRITE"; case ND_SET_RAOINT: return "RAOINT"; case ND_SET_RDPID: return "RDPID"; case ND_SET_RDPMC: return "RDPMC"; case ND_SET_RDPRU: return "RDPRU"; case ND_SET_RDRAND: return "RDRAND"; case ND_SET_RDSEED: return "RDSEED"; case ND_SET_RDTSCP: return "RDTSCP"; case ND_SET_RDWRFSGS: return "RDWRFSGS"; case ND_SET_SERIALIZE: return "SERIALIZE"; case ND_SET_SGX: return "SGX"; case ND_SET_SHA: return "SHA"; case ND_SET_SMAP: return "SMAP"; case ND_SET_SMX: return "SMX"; case ND_SET_SNP: return "SNP"; case ND_SET_SSE: return "SSE"; case ND_SET_SSE2: return "SSE2"; case ND_SET_SSE3: return "SSE3"; case ND_SET_SSE4: return "SSE4"; case ND_SET_SSE42: return "SSE42"; case ND_SET_SSE4A: return "SSE4A"; case ND_SET_SSSE3: return "SSSE3"; case ND_SET_SVM: return "SVM"; case ND_SET_TBM: return "TBM"; case ND_SET_TDX: return "TDX"; case ND_SET_TSX: return "TSX"; case ND_SET_TSXLDTRK: return "TSXLDTRK"; case ND_SET_UD: return "UD"; case ND_SET_UINTR: return "UINTR"; case ND_SET_UNKNOWN: return "UNKNOWN"; case ND_SET_VAES: return "VAES"; case ND_SET_VPCLMULQDQ: return "VPCLMULQDQ"; case ND_SET_VTX: return "VTX"; case ND_SET_WAITPKG: return "WAITPKG"; case ND_SET_WBNOINVD: return "WBNOINVD"; case ND_SET_WRMSRNS: return "WRMSRNS"; case ND_SET_X87: return "X87"; case ND_SET_XOP: return "XOP"; case ND_SET_XSAVE: return "XSAVE"; case ND_SET_XSAVEC: return "XSAVEC"; case ND_SET_XSAVES: return "XSAVES"; default: return "???"; } } const char* category_to_string( __in ND_INS_CATEGORY Category ) { switch (Category) { case ND_CAT_3DNOW: return "3DNOW"; case ND_CAT_AES: return "AES"; case ND_CAT_AESKL: return "AESKL"; case ND_CAT_ARITH: return "ARITH"; case ND_CAT_AMX: return "AMX"; case ND_CAT_AVX: return "AVX"; case ND_CAT_AVX2: return "AVX2"; case ND_CAT_AVX2GATHER: return "AVX2GATHER"; case ND_CAT_AVX512: return "AVX512"; case ND_CAT_AVX512BF16: return "AVX512BF16"; case ND_CAT_AVX512VBMI: return "AVX512VBMI"; case ND_CAT_AVX512VP2INTERSECT: return "AVX512VP2INTERSECT"; case ND_CAT_AVX512FP16: return "AVX512FP16"; case ND_CAT_AVXIFMA: return "AVXIFMA"; case ND_CAT_AVXVNNI: return "AVXVNNI"; case ND_CAT_AVXVNNIINT8: return "AVXVNNIINT8"; case ND_CAT_AVXNECONVERT: return "AVXNECONVERT"; case ND_CAT_BITBYTE: return "BITBYTE"; case ND_CAT_BLEND: return "BLEND"; case ND_CAT_BMI1: return "BMI1"; case ND_CAT_BMI2: return "BMI2"; case ND_CAT_BROADCAST: return "BROADCAST"; case ND_CAT_CALL: return "CALL"; case ND_CAT_CET: return "CET"; case ND_CAT_CLDEMOTE: return "CLDEMOTE"; case ND_CAT_CMOV: return "CMOV"; case ND_CAT_CMPCCXADD: return "CMPCCXADD"; case ND_CAT_COMPRESS: return "COMPRESS"; case ND_CAT_COND_BR: return "COND_BR"; case ND_CAT_CONFLICT: return "CONFLICT"; case ND_CAT_CONVERT: return "CONVERT"; case ND_CAT_DATAXFER: return "DATAXFER"; case ND_CAT_DECIMAL: return "DECIMAL"; case ND_CAT_ENQCMD: return "ENQCMD"; case ND_CAT_EXPAND: return "EXPAND"; case ND_CAT_FLAGOP: return "FLAGOP"; case ND_CAT_FMA4: return "FMA4"; case ND_CAT_GATHER: return "GATHER"; case ND_CAT_GFNI: return "GFNI"; case ND_CAT_HRESET: return "HRESET"; case ND_CAT_I386: return "I386"; case ND_CAT_IFMA: return "IFMA"; case ND_CAT_INTERRUPT: return "INTERRUPT"; case ND_CAT_IO: return "IO"; case ND_CAT_IOSTRINGOP: return "IOSTRINGOP"; case ND_CAT_KL: return "KL"; case ND_CAT_KMASK: return "KMASK"; case ND_CAT_KNL: return "KNL"; case ND_CAT_LKGS: return "LKGS"; case ND_CAT_LOGIC: return "LOGIC"; case ND_CAT_LOGICAL: return "LOGICAL"; case ND_CAT_LOGICAL_FP: return "LOGICAL_FP"; case ND_CAT_LWP: return "LWP"; case ND_CAT_LZCNT: return "LZCNT"; case ND_CAT_MISC: return "MISC"; case ND_CAT_MMX: return "MMX"; case ND_CAT_MOVDIR64B: return "MOVDIR64B"; case ND_CAT_MOVDIRI: return "MOVDIRI"; case ND_CAT_MPX: return "MPX"; case ND_CAT_NOP: return "NOP"; case ND_CAT_PADLOCK: return "PADLOCK"; case ND_CAT_PCLMULQDQ: return "PCLMULQDQ"; case ND_CAT_PCONFIG: return "PCONFIG"; case ND_CAT_POP: return "POP"; case ND_CAT_PREFETCH: return "PREFETCH"; case ND_CAT_PTWRITE: return "PTWRITE"; case ND_CAT_PUSH: return "PUSH"; case ND_CAT_RAOINT: return "RAO-INT"; case ND_CAT_RDPID: return "RDPID"; case ND_CAT_RDRAND: return "RDRAND"; case ND_CAT_RDSEED: return "RDSEED"; case ND_CAT_RDWRFSGS: return "RDWRFSGS"; case ND_CAT_RET: return "RET"; case ND_CAT_ROTATE: return "ROTATE"; case ND_CAT_SCATTER: return "SCATTER"; case ND_CAT_SEGOP: return "SEGOP"; case ND_CAT_SEMAPHORE: return "SEMAPHORE"; case ND_CAT_SGX: return "SGX"; case ND_CAT_SHA: return "SHA"; case ND_CAT_SHIFT: return "SHIFT"; case ND_CAT_SMAP: return "SMAP"; case ND_CAT_SSE: return "SSE"; case ND_CAT_SSE2: return "SSE2"; case ND_CAT_STRINGOP: return "STRINGOP"; case ND_CAT_STTNI: return "STTNI"; case ND_CAT_SYSCALL: return "SYSCALL"; case ND_CAT_SYSRET: return "SYSRET"; case ND_CAT_SYSTEM: return "SYSTEM"; case ND_CAT_TDX: return "TDX"; case ND_CAT_UD: return "UD"; case ND_CAT_UINTR: return "UINTR"; case ND_CAT_UNCOND_BR: return "UNCOND_BR"; case ND_CAT_UNKNOWN: return "UNKNOWN"; case ND_CAT_VAES: return "VAES"; case ND_CAT_VFMA: return "VFMA"; case ND_CAT_VFMAPS: return "VFMAPS"; case ND_CAT_VNNI: return "VNNI"; case ND_CAT_VNNIW: return "VNNIW"; case ND_CAT_VPCLMULQDQ: return "VPCLMULQDQ"; case ND_CAT_VPOPCNT: return "VPOPCNT"; case ND_CAT_VTX: return "VTX"; case ND_CAT_WAITPKG: return "WAITPKG"; case ND_CAT_WBNOINVD: return "WBNOINVD"; case ND_CAT_WIDENOP: return "WIDENOP"; case ND_CAT_WIDE_KL: return "WIDE_KL"; case ND_CAT_X87_ALU: return "X87_ALU"; case ND_CAT_XOP: return "XOP"; case ND_CAT_XSAVE: return "XSAVE"; default: return "???"; } } const char* optype_to_string( __in ND_OPERAND_TYPE OpType ) { switch (OpType) { case ND_OP_REG: return "Register"; case ND_OP_IMM: return "Immediate"; case ND_OP_CONST: return "Constant"; case ND_OP_MEM: return "Memory"; case ND_OP_ADDR: return "Address"; case ND_OP_OFFS: return "Offset"; case ND_OP_BANK: return "Bank"; default: return "???"; } } const char* regtype_to_string( __in ND_REG_TYPE RegType ) { switch (RegType) { case ND_REG_GPR: return "General Purpose"; case ND_REG_SEG: return "Segment"; case ND_REG_FPU: return "FP"; case ND_REG_MMX: return "MMX"; case ND_REG_SSE: return "Vector"; case ND_REG_BND: return "Bound"; case ND_REG_MSK: return "Mask"; case ND_REG_TILE: return "Tile"; case ND_REG_SYS: return "System"; case ND_REG_MSR: return "Model Specific"; case ND_REG_XCR: return "Extended Control"; case ND_REG_CR: return "Control"; case ND_REG_DR: return "Debug"; case ND_REG_TR: return "Test"; case ND_REG_MXCSR: return "MXCSR"; case ND_REG_PKRU: return "PKRU"; case ND_REG_SSP: return "SSP"; case ND_REG_FLG: return "Flags"; case ND_REG_RIP: return "IP"; case ND_REG_UIF: return "UIF"; default: return "???"; } } const char* encoding_to_string( __in ND_OPERAND_ENCODING Encoding ) { switch (Encoding) { case ND_OPE_R: return "R"; case ND_OPE_M: return "M"; case ND_OPE_V: return "V"; case ND_OPE_O: return "O"; case ND_OPE_I: return "I"; case ND_OPE_D: return "D"; case ND_OPE_C: return "C"; case ND_OPE_1: return "1"; case ND_OPE_A: return "A"; case ND_OPE_L: return "L"; case ND_OPE_E: return "E"; case ND_OPE_S: return "S"; default: return ""; } } const char* tuple_to_string( __in ND_TUPLE Tuple ) { switch (Tuple) { case ND_TUPLE_FV: return "Full"; case ND_TUPLE_HV: return "Half"; case ND_TUPLE_FVM: return "Full Mem"; case ND_TUPLE_HVM: return "Half Mem"; case ND_TUPLE_QVM: return "Quarter Mem"; case ND_TUPLE_OVM: return "Eigth Mem"; case ND_TUPLE_T1S: return "Tuple 1 Scalar"; case ND_TUPLE_T1F: return "Tuple 1 Fixes"; case ND_TUPLE_T2: return "Tuple 2"; case ND_TUPLE_T4: return "Tuple 4"; case ND_TUPLE_T8: return "Tuple 8"; case ND_TUPLE_M128: return "Mem 128"; case ND_TUPLE_DUP: return "MOVDDUP"; case ND_TUPLE_T1S8: return "Tuple 1 scalar, 8 bit"; case ND_TUPLE_T1S16: return "Tuple 1 scalar, 16 bit"; case ND_TUPLE_T1_4X: return "Tuple 4 x 32 bit"; default: return "None"; } } const char* exception_evex_to_string( __in ND_EX_TYPE_EVEX ExClass ) { switch (ExClass) { case ND_EXT_E1: return "E1"; case ND_EXT_E1NF: return "E1NF"; case ND_EXT_E2: return "E2"; case ND_EXT_E3: return "E3"; case ND_EXT_E3NF: return "E3NF"; case ND_EXT_E4: return "E4"; case ND_EXT_E4nb: return "E4.nb"; case ND_EXT_E4NF: return "E4NF"; case ND_EXT_E4NFnb: return "E4NF.nb"; case ND_EXT_E5: return "E5"; case ND_EXT_E5NF: return "E5NF"; case ND_EXT_E6: return "E6"; case ND_EXT_E6NF: return "E6NF"; case ND_EXT_E7NM: return "E7NM"; case ND_EXT_E9: return "E9"; case ND_EXT_E9NF: return "E9NF"; case ND_EXT_E10: return "E10"; case ND_EXT_E10NF: return "E10NF"; case ND_EXT_E11: return "E11"; case ND_EXT_E12: return "E12"; case ND_EXT_E12NP: return "E12NP"; default: return "None"; } } BYTE hex_to_bin( __in char HexByte ) { if ((HexByte >= '0') && (HexByte <= '9')) { return HexByte - '0'; } else if ((HexByte >= 'A') && (HexByte <= 'F')) { return HexByte - 'A' + 10; } else if ((HexByte >= 'a') && (HexByte <= 'f')) { return HexByte - 'a' + 10; } return 0; } INT32 regstr_to_idx( __in const char* Reg ) { static const char* reg64[] = { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }; for (INT32 i = 0; i < (INT32)ARRAYSIZE(reg64); i++) { if (!_stricmp(Reg, reg64[i])) { return i; } } return -1; } _Success_(return) BOOLEAN match_gpr( __in const char* Arg, __out DWORD* Index ) { if (Arg[0] == '-') { INT32 idx = regstr_to_idx(Arg + 1); // this will be the name of the register or the NULL terminator if (idx >= 0) { *Index = idx; return TRUE; } } return FALSE; } void print_instruction( __in SIZE_T Rip, __in PINSTRUX Instrux, __in PDISASM_OPTIONS Options ) { char instruxText[ND_MIN_BUF_SIZE]; DWORD k = 0, idx = 0, i = 0; printf("%p ", (void*)(Rip)); if (Options->Highlight) { // Display prefixes. SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_INTENSITY); for (idx = 0; idx < Instrux->PrefLength; idx++, k++) { printf("%02x", Instrux->InstructionBytes[k]); } SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED); // Display opcodes. SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_GREEN | FOREGROUND_INTENSITY); for (idx = 0; idx < (DWORD)(ND_IS_3DNOW(Instrux) ? Instrux->OpLength - 1 : Instrux->OpLength); idx++, k++) { printf("%02x", Instrux->InstructionBytes[k]); } SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED); // Display modrm and sib. SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_INTENSITY); for (idx = 0; idx < (DWORD)(Instrux->HasModRm + Instrux->HasSib); idx++, k++) { printf("%02x", Instrux->InstructionBytes[k]); } SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED); // Display displacement. SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE | FOREGROUND_INTENSITY); for (idx = 0; idx < (DWORD)(Instrux->DispLength); idx++, k++) { printf("%02x", Instrux->InstructionBytes[k]); } SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED); // Display relative offset/moffset/immediates. SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_RED | FOREGROUND_INTENSITY); for (idx = 0; idx < (DWORD)(Instrux->Imm1Length + Instrux->Imm2Length + Instrux->RelOffsLength + Instrux->MoffsetLength + Instrux->HasSseImm + Instrux->AddrLength); idx++, k++) { printf("%02x", Instrux->InstructionBytes[k]); } SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED); if (ND_IS_3DNOW(Instrux)) { SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_GREEN | FOREGROUND_INTENSITY); for (; k < Instrux->Length; k++) { printf("%02x", Instrux->InstructionBytes[k]); } SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED); } } for (; k < Instrux->Length; k++) { printf("%02x", Instrux->InstructionBytes[k]); } printf("%s", gSpaces[16 - (Instrux->Length & 0xF)]); NdToText(Instrux, Rip, ND_MIN_BUF_SIZE, instruxText); printf("%s\n", instruxText); if (Options->ExtendedInfo) { const BYTE opsize[3] = { 2, 4, 8 }; const BYTE adsize[3] = { 2, 4, 8 }; const BYTE veclen[3] = { 16, 32, 64 }; printf(" DSIZE: %2d, ASIZE: %2d, VLEN: ", opsize[Instrux->EfOpMode] * 8, adsize[Instrux->AddrMode] * 8); if (ND_HAS_VECTOR(Instrux)) { printf("%2d\n", veclen[Instrux->VecMode] * 8); } else { printf("-\n"); } printf(" ISA Set: %s, Ins cat: %s, CET tracked: %s\n", set_to_string(Instrux->IsaSet), category_to_string(Instrux->Category), Instrux->IsCetTracked ? "yes" : "no"); if (0 != Instrux->CpuidFlag.Flag) { char *regs[4] = { "eax", "ecx", "edx", "ebx" }; printf(" CPUID leaf: 0x%08x", Instrux->CpuidFlag.Leaf); if (Instrux->CpuidFlag.SubLeaf != ND_CFF_NO_SUBLEAF) { printf(", sub-leaf: 0x%08x", Instrux->CpuidFlag.SubLeaf); } printf(", reg: %s, bit: %u\n", regs[Instrux->CpuidFlag.Reg], Instrux->CpuidFlag.Bit); } if (Instrux->HasEvex) { printf(" EVEX Tuple Type: %s\n", tuple_to_string((ND_TUPLE)Instrux->TupleType)); } if (Instrux->ExceptionClass != ND_EXC_None) { printf(" Exception class: %s, ", Instrux->ExceptionClass == ND_EXC_SSE_AVX ? "SSE/VEX" : Instrux->ExceptionClass == ND_EXC_EVEX ? "EVEX" : Instrux->ExceptionClass == ND_EXC_OPMASK ? "Opmask" : Instrux->ExceptionClass == ND_EXC_AMX ? "AMX" : "???"); switch (Instrux->ExceptionClass) { case ND_EXC_SSE_AVX: printf("exception type: %d\n", Instrux->ExceptionType); break; case ND_EXC_EVEX: printf("exception type: %s\n", exception_evex_to_string((ND_EX_TYPE_EVEX)Instrux->ExceptionType)); break; case ND_EXC_OPMASK: printf("exception type: K%d\n", Instrux->ExceptionType + 19); break; case ND_EXC_AMX: printf("exception type: AMX-E%d\n", Instrux->ExceptionType); break; default: printf("exception type: ???\n"); break; } } if (Instrux->FlagsAccess.RegAccess != 0) { DWORD fidx, all; BOOLEAN individual = FALSE; char *flags[22] = { "CF", NULL, "PF", NULL, "AF", NULL, "ZF", "SF", "TF", "IF", "DF", "OF", "IOPL",NULL, "NT", NULL, "RF", "VM", "AC", "VIF", "VIP", "ID" }; all = Instrux->FlagsAccess.Tested.Raw | Instrux->FlagsAccess.Modified.Raw | Instrux->FlagsAccess.Set.Raw | Instrux->FlagsAccess.Cleared.Raw | Instrux->FlagsAccess.Undefined.Raw; printf(" FLAGS access\n "); for (fidx = 0; fidx < 21; fidx++) { if (flags[fidx] != NULL) { if (0 == (all & (1ULL << fidx))) { continue; } individual = TRUE; printf("%s: ", flags[fidx]); if (Instrux->FlagsAccess.Tested.Raw & (1ULL << fidx)) { printf("t"); } if (Instrux->FlagsAccess.Modified.Raw & (1ULL << fidx)) { printf("m"); } if (Instrux->FlagsAccess.Set.Raw & (1ULL << fidx)) { printf("1"); } if (Instrux->FlagsAccess.Cleared.Raw & (1ULL << fidx)) { printf("0"); } if (Instrux->FlagsAccess.Undefined.Raw & (1ULL << fidx)) { printf("u"); } printf(", "); } } if (!individual) { printf("Entire register"); } printf("\n"); } if (Instrux->IsaSet == ND_SET_X87) { #define FPU_FLG_ACC_TO_STR(x) ((x) == ND_FPU_FLAG_UNDEFINED ? "u" : \ (x) == ND_FPU_FLAG_MODIFIED ? "m" : (x) == ND_FPU_FLAG_SET_0 ? "0" : "1") printf(" FPU flags access\n C0: %s, C1: %s, C2: %s, C3: %s, \n", FPU_FLG_ACC_TO_STR(Instrux->FpuFlagsAccess.C0), FPU_FLG_ACC_TO_STR(Instrux->FpuFlagsAccess.C1), FPU_FLG_ACC_TO_STR(Instrux->FpuFlagsAccess.C2), FPU_FLG_ACC_TO_STR(Instrux->FpuFlagsAccess.C3)); } printf(" Valid modes\n" " R0: %s, R1: %s, R2: %s, R3: %s\n" " Real: %s, V8086: %s, Prot: %s, Compat: %s, Long: %s\n" " SMM on: %s, SMM off: %s, SGX on: %s, SGX off: %s, TSX on: %s, TSX off: %s\n" " VMXRoot: %s, VMXNonRoot: %s, VMXRoot SEAM: %s, VMXNonRoot SEAM: %s, VMX off: %s\n", Instrux->ValidModes.Ring0 ? "yes" : "no", Instrux->ValidModes.Ring1 ? "yes" : "no", Instrux->ValidModes.Ring2 ? "yes" : "no", Instrux->ValidModes.Ring3 ? "yes" : "no", Instrux->ValidModes.Real ? "yes" : "no", Instrux->ValidModes.V8086 ? "yes" : "no", Instrux->ValidModes.Protected ? "yes" : "no", Instrux->ValidModes.Compat ? "yes" : "no", Instrux->ValidModes.Long ? "yes" : "no", Instrux->ValidModes.Smm ? "yes" : "no", Instrux->ValidModes.SmmOff ? "yes" : "no", Instrux->ValidModes.Sgx ? "yes" : "no", Instrux->ValidModes.SgxOff ? "yes" : "no", Instrux->ValidModes.Tsx ? "yes" : "no", Instrux->ValidModes.TsxOff ? "yes" : "no", Instrux->ValidModes.VmxRoot ? "yes" : "no", Instrux->ValidModes.VmxNonRoot ? "yes" : "no", Instrux->ValidModes.VmxRootSeam ? "yes" : "no", Instrux->ValidModes.VmxNonRootSeam ? "yes" : "no", Instrux->ValidModes.VmxOff ? "yes" : "no" ); printf(" Valid prefixes\n" " REP: %s, REPcc: %s, LOCK: %s\n" " HLE: %s, XACQUIRE only: %s, XRELEASE only: %s\n" " BND: %s, BHINT: %s, DNT: %s\n", Instrux->ValidPrefixes.Rep ? "yes" : "no", Instrux->ValidPrefixes.RepCond ? "yes" : "no", Instrux->ValidPrefixes.Lock ? "yes" : "no", Instrux->ValidPrefixes.Hle ? "yes" : "no", Instrux->ValidPrefixes.Xacquire ? "yes" : "no", Instrux->ValidPrefixes.Xrelease ? "yes" : "no", Instrux->ValidPrefixes.Bnd ? "yes" : "no", Instrux->ValidPrefixes.Bhint ? "yes" : "no", Instrux->ValidPrefixes.Dnt ? "yes" : "no" ); for (i = 0; i < Instrux->OperandsCount; i++) { printf(" Operand: %u, Acc: %s, Type: %10s, Size: %2d, RawSize: %2d, Encoding: %s", i, Instrux->Operands[i].Access.Access == ND_ACCESS_READ ? "R-" : Instrux->Operands[i].Access.Access == ND_ACCESS_WRITE ? "-W" : Instrux->Operands[i].Access.Access == (ND_ACCESS_READ|ND_ACCESS_WRITE) ? "RW" : Instrux->Operands[i].Access.Access == ND_ACCESS_COND_READ ? "CR" : Instrux->Operands[i].Access.Access == ND_ACCESS_COND_WRITE ? "CW" : Instrux->Operands[i].Access.Access == (ND_ACCESS_COND_READ|ND_ACCESS_COND_WRITE) ? "CRCW" : Instrux->Operands[i].Access.Access == (ND_ACCESS_READ | ND_ACCESS_COND_WRITE) ? "RCW" : Instrux->Operands[i].Access.Access == (ND_ACCESS_COND_READ|ND_ACCESS_WRITE) ? "CRW" : Instrux->Operands[i].Access.Access == ND_ACCESS_PREFETCH ? "P" : "--", optype_to_string(Instrux->Operands[i].Type), (int)Instrux->Operands[i].Size, (int)Instrux->Operands[i].RawSize, encoding_to_string(Instrux->Operands[i].Encoding) ); if (ND_OP_MEM == Instrux->Operands[i].Type) { printf(", "); if (Instrux->Operands[i].Info.Memory.IsRipRel) { printf("RIP relative: yes, "); } if (Instrux->Operands[i].Info.Memory.IsAG) { printf("Address Generator: yes, "); } if (Instrux->Operands[i].Info.Memory.IsBitbase) { printf("Bitbase Addressing: yes, "); } if (Instrux->Operands[i].Info.Memory.IsMib) { printf("MIB Addressing: yes, "); } if (Instrux->Operands[i].Info.Memory.IsVsib) { printf("VSIB Addressing: yes, "); } if (Instrux->Operands[i].Info.Memory.IsSibMem) { printf("Sibmem Addressing: yes, "); } if (Instrux->Operands[i].Info.Memory.IsStack) { printf("Stack: yes, "); } if (Instrux->Operands[i].Info.Memory.IsString) { printf("String: yes, "); } if (Instrux->Operands[i].Info.Memory.IsShadowStack) { printf("Shadow stack: %d, ", Instrux->Operands[i].Info.Memory.ShStkType); } if (Instrux->Operands[i].Info.Memory.HasCompDisp) { printf("Compressed displacement: yes, "); } if (Instrux->Operands[i].Info.Memory.HasBroadcast) { printf("Broadcast: yes, "); } printf("\n "); if (Instrux->Operands[i].Info.Memory.HasSeg) { printf("Segment: %d, ", Instrux->Operands[i].Info.Memory.Seg); } if (Instrux->Operands[i].Info.Memory.HasBase) { printf("Base: %d, ", Instrux->Operands[i].Info.Memory.Base); } if (Instrux->Operands[i].Info.Memory.HasIndex) { printf("Index: %d * %d, ", Instrux->Operands[i].Info.Memory.Index, Instrux->Operands[i].Info.Memory.Scale); } if (Instrux->Operands[i].Info.Memory.HasDisp) { printf("Displacement: 0x%016llx, ", (unsigned long long)Instrux->Operands[i].Info.Memory.Disp); } if (Instrux->Operands[i].Info.Memory.IsVsib) { printf("\n "); printf("VSIB index size: %d, VSIB element size: %d, VSIB element count: %d", Instrux->Operands[i].Info.Memory.Vsib.IndexSize, Instrux->Operands[i].Info.Memory.Vsib.ElemSize, Instrux->Operands[i].Info.Memory.Vsib.ElemCount); } } if (ND_OP_REG == Instrux->Operands[i].Type) { printf(", RegType: %16s, RegSize: %2u, ", regtype_to_string(Instrux->Operands[i].Info.Register.Type), Instrux->Operands[i].Info.Register.Size); if (Instrux->Operands[i].Info.Register.Type == ND_REG_MSR) { printf("RegId: 0x%08x, RegCount: %u\n", Instrux->Operands[i].Info.Register.Reg, Instrux->Operands[i].Info.Register.Count); } else { printf("RegId: %u, RegCount: %u\n", Instrux->Operands[i].Info.Register.Reg, Instrux->Operands[i].Info.Register.Count); } } else { printf("\n"); } if (Instrux->Operands[i].Decorator.HasBroadcast) { printf(" Decorator: Broadcast %d bytes element %d times\n", Instrux->Operands[i].Decorator.Broadcast.Size, Instrux->Operands[i].Decorator.Broadcast.Count); } if (Instrux->Operands[i].Decorator.HasMask) { printf(" Decorator: Mask k%d\n", Instrux->Operands[i].Decorator.Mask.Msk); } if (Instrux->Operands[i].Decorator.HasZero) { printf(" Decorator: Zero (no merging)\n"); } } printf("\n"); } if (Options->BitFields && Instrux->HasModRm) { printf(" Instruction bit fields:\n"); if (Instrux->HasEvex) { printf(" EVEX: 0x%02x 0x%02x 0x%02x 0x%02x > mm: %d, R': %d, B: %d, X: %d, R: %d, pp: %d, " "vvvv: %d, W: %d, aaa: %d, V': %d, b: %d, L'L: %d, z: %d\n", Instrux->Evex.Evex[0], Instrux->Evex.Evex[1], Instrux->Evex.Evex[2], Instrux->Evex.Evex[3], Instrux->Evex.m, Instrux->Evex.rp, Instrux->Evex.b, Instrux->Evex.x, Instrux->Evex.r, Instrux->Evex.p, Instrux->Evex.v, Instrux->Evex.w, Instrux->Evex.a, Instrux->Evex.vp, Instrux->Evex.bm, Instrux->Evex.l, Instrux->Evex.z); } if (Instrux->HasVex) { if (Instrux->VexMode == ND_VEXM_2B) { printf(" VEX2: 0x%02x 0x%02x > pp: %d, L: %d, vvvv: %d, R: %d\n", Instrux->Vex2.Vex[0], Instrux->Vex2.Vex[1], Instrux->Vex2.p, Instrux->Vex2.l, Instrux->Vex2.v, Instrux->Vex2.r); } else { printf(" VEX3: 0x%02x 0x%02x 0x%02x > m-mmmm: %d, B: %d, X: %d, R: %d, pp: %d, L: %d, vvvv: %d, W: %d\n", Instrux->Vex3.Vex[0], Instrux->Vex3.Vex[1], Instrux->Vex3.Vex[2], Instrux->Vex3.m, Instrux->Vex3.b, Instrux->Vex3.x, Instrux->Vex3.r, Instrux->Vex3.p, Instrux->Vex3.l, Instrux->Vex3.v, Instrux->Vex3.w); } } if (Instrux->HasXop) { printf(" XOP: 0x%02x 0x%02x 0x%02x > m: %d, B: %d, X: %d, R: %d, p: %d, L: %d, v: %d, W: %d\n", Instrux->Xop.Xop[0], Instrux->Xop.Xop[1], Instrux->Xop.Xop[2], Instrux->Xop.m, Instrux->Xop.b, Instrux->Xop.x, Instrux->Xop.r, Instrux->Xop.p, Instrux->Xop.l, Instrux->Xop.v, Instrux->Xop.w); } if (Instrux->HasRex) { printf(" REX: 0x%02x > B: %d, X: %d, R: %d, W: %d\n", Instrux->Rex.Rex, Instrux->Rex.b, Instrux->Rex.x, Instrux->Rex.r, Instrux->Rex.w); } if (Instrux->HasModRm) { printf(" ModR/M: 0x%02x > mod: %d, reg: %d, rm: %d\n", Instrux->ModRm.ModRm, Instrux->ModRm.mod, Instrux->ModRm.reg, Instrux->ModRm.rm); } if (Instrux->HasSib) { printf(" SIB: 0x%02x > scale: %d, index: %d, base: %d\n", Instrux->Sib.Sib, Instrux->Sib.scale, Instrux->Sib.index, Instrux->Sib.base); } } } void handle_disasm( __in PDISASM_OPTIONS Options ) { INSTRUX instrux; ND_CONTEXT ctx = { 0 }; unsigned long long icount = 0, istart, iend, start, end, itotal = 0, tilen = 0, ticount = 0; SIZE_T rip, fsize = Options->Size; PBYTE buffer = Options->Buffer; start = clock(); NdInitContext(&ctx); ctx.DefCode = Options->Mode; ctx.DefData = Options->Mode; ctx.DefStack = Options->Mode; ctx.VendMode = Options->Vendor; ctx.FeatMode = Options->Feature; // Disassemble rip = Options->Offset; while (rip < Options->Size) { NDSTATUS status; icount++; #if defined(ND_ARCH_X86) || defined(ND_ARCH_X64) istart = __rdtsc(); #else istart = 0; #endif status = NdDecodeWithContext(&instrux, buffer + rip, fsize - rip, &ctx); #if defined(ND_ARCH_X86) || defined(ND_ARCH_X64) iend = __rdtsc(); #else iend = 1; #endif itotal += iend - istart; if (!ND_SUCCESS(status)) { if (Options->Print) { printf("%p ", (void*)(rip + Options->Rip)); printf("%02x", buffer[rip]); printf("%s", gSpaces[16 - 1]); printf("db 0x%02x (0x%08x)\n", buffer[rip], status); } if (Options->Skip16) { rip += 16; } else { rip++; } } else { tilen += instrux.Length; ticount++; if (Options->Print) { print_instruction(rip + Options->Rip, &instrux, Options); } if (Options->Skip16) { rip += 16; } else { rip += instrux.Length; } } } end = clock(); if (Options->Stats) { printf("Disassembled %llu instructions in %llums, %4.4f instructions/second, %4.6f clocks/instruction, average ilen %4.6f bytes\n", icount, end - start, icount / (double)(end - start) * 1000, itotal / (double)icount, tilen / (double)ticount); } } void handle_shemu( PDISASM_OPTIONS Options ) { SHEMU_CONTEXT ctx; SHEMU_STATUS shstatus; char *fileName; HANDLE hFile; DWORD outSize; SIZE_T rip = 0, fsize = Options->Size, offset = 0, decFileNameLength = 0, shellSize; char *fNameDecoded; PBYTE buffer = Options->Buffer; memset(&ctx, 0, sizeof(ctx)); rip = Options->Rip; fileName = Options->FileName; if (fileName == NULL) { decFileNameLength = sizeof("hex_string_decoded.bin"); fNameDecoded = (char *)malloc(sizeof(char) * decFileNameLength); } else { decFileNameLength = strlen(fileName) + sizeof("_decoded.bin"); fNameDecoded = (char *)malloc(sizeof(char) * decFileNameLength); } if (NULL == fNameDecoded) { printf("Could not allocate file name.\n"); } else { if (fileName == NULL) { sprintf_s(fNameDecoded, decFileNameLength, "hex_string_decoded.bin"); } else { sprintf_s(fNameDecoded, decFileNameLength, "%s_decoded.bin", fileName); } } if (Options->Offset < PAGE_SIZE) { offset = Options->Offset; } // A little extra space, since shellcodes tend to do accesses after their code... shellSize = fsize + 0x100; // Allocate the shellcode, stack, shell bitmap and stack bitmaps. ctx.Shellcode = (uint8_t *)malloc(shellSize); if (NULL == ctx.Shellcode) { printf("Memory error: couldn't allocated %zu bytes!\n", fsize); goto cleanup_and_exit; } #define STACK_SIZE 0x2000 ctx.Stack = (uint8_t *)malloc(STACK_SIZE); if (NULL == ctx.Stack) { printf("Memory error: couldn't allocated %zu bytes!\n", fsize); goto cleanup_and_exit; } ctx.Intbuf = (uint8_t *)malloc(shellSize + STACK_SIZE); if (NULL == ctx.Intbuf) { printf("Memory error: couldn't allocated %zu bytes!\n", fsize); goto cleanup_and_exit; } memset(ctx.Shellcode, 0, shellSize); memset(ctx.Stack, 0, STACK_SIZE); memcpy((BYTE *)ctx.Shellcode, (BYTE *)buffer, fsize); memset(ctx.Intbuf, 0, shellSize + STACK_SIZE); ctx.ShellcodeBase = (rip != 0 ? rip & PAGE_MASK : 0x200000); ctx.ShellcodeSize = (DWORD)shellSize; ctx.StackBase = (ctx.ShellcodeBase & PAGE_MASK) - STACK_SIZE - 0x1000; ctx.StackSize = STACK_SIZE; ctx.IntbufSize = (DWORD)shellSize + STACK_SIZE; ctx.Mode = Options->Mode; ctx.Ring = Options->Ring; ctx.Registers.RegFlags = NDR_RFLAG_IF | 2; ctx.Registers.RegRip = ctx.ShellcodeBase + offset; ctx.Registers.RegRsp = ctx.StackBase + STACK_SIZE / 2; if (ctx.Mode == ND_CODE_64) { ctx.Segments.Cs.Selector = (ctx.Ring == 3) ? 0x33 : 0x10; ctx.Segments.Ds.Selector = (ctx.Ring == 3) ? 0x2b : 0x18; ctx.Segments.Es.Selector = (ctx.Ring == 3) ? 0x2b : 0x18; ctx.Segments.Ss.Selector = (ctx.Ring == 3) ? 0x2b : 0x18; ctx.Segments.Fs.Selector = (ctx.Ring == 3) ? 0x2b : 0x00; ctx.Segments.Gs.Selector = (ctx.Ring == 3) ? 0x53 : 0x00; ctx.Segments.Fs.Base = 0; ctx.Segments.Gs.Base = 0x7FFF0000; } else { ctx.Segments.Cs.Selector = (ctx.Ring == 3) ? 0x1b : 0x08; ctx.Segments.Ds.Selector = (ctx.Ring == 3) ? 0x23 : 0x10; ctx.Segments.Es.Selector = (ctx.Ring == 3) ? 0x23 : 0x10; ctx.Segments.Ss.Selector = (ctx.Ring == 3) ? 0x23 : 0x10; ctx.Segments.Fs.Selector = (ctx.Ring == 3) ? 0x3b : 0x30; ctx.Segments.Gs.Selector = (ctx.Ring == 3) ? 0x23 : 0x00; ctx.Segments.Fs.Base = 0x7FFF0000; ctx.Segments.Gs.Base = 0; } // Dummy values, to resemble regular CR0/CR4 values. ctx.Registers.RegCr0 = 0x0000000080050031; ctx.Registers.RegCr4 = 0x0000000000170678; if (Options->UseShemuRegs) { // Copy the new GPRs memcpy(&ctx.Registers.RegRax, Options->ShemuRegs, sizeof(Options->ShemuRegs)); // Update the stack to point to the new RSP, if one exists if (ctx.Registers.RegRsp != 0) { // Consider the stack base at least with a page before the current RSP. In case of pushes or operations // which decrease the RSP, we will always give SHEMU_ABORT_BRANCH_OUTSIDE otherwise. ctx.StackBase = ctx.Registers.RegRsp - 0x1000; } } ctx.TibBase = 0x7FFF0000; ctx.MaxInstructionsCount = 4096; ctx.Flags = 0; ctx.Options = SHEMU_OPT_TRACE_EMULATION; ctx.Log = &ShemuLog; ctx.AccessMemory = (ShemuMemAccess)&ShemuAccessMem; // Configurable thresholds. ctx.NopThreshold = SHEMU_DEFAULT_NOP_THRESHOLD; ctx.StrThreshold = SHEMU_DEFAULT_STR_THRESHOLD; ctx.MemThreshold = SHEMU_DEFAULT_MEM_THRESHOLD; // Check for AES support. int regs[4] = { 0 }; #if defined(ND_ARCH_X86) || defined(ND_ARCH_X64) __cpuid(regs, 1); #endif // CPUID leaf function 1, register ECX, bit 25 indicates AES-NI support. if (!!(regs[2] & (1UL << 25))) { ctx.Options |= SHEMU_OPT_SUPPORT_AES; } if (Options->BypassSelfWrites) { ctx.Options |= SHEMU_OPT_BYPASS_SELF_WRITES; } shstatus = ShemuEmulate(&ctx); printf("Emulation terminated with status 0x%08x, flags: 0x%llx, %u NOPs, %u total instructions\n", shstatus, (unsigned long long)ctx.Flags, ctx.NopCount, ctx.InstructionsCount); if (ctx.Flags & SHEMU_FLAG_NOP_SLED) { printf(" SHEMU_FLAG_NOP_SLED\n"); } if (ctx.Flags & SHEMU_FLAG_LOAD_RIP) { printf(" SHEMU_FLAG_LOAD_RIP\n"); } if (ctx.Flags & SHEMU_FLAG_WRITE_SELF) { printf(" SHEMU_FLAG_WRITE_SELF\n"); } if (ctx.Flags & SHEMU_FLAG_SYSCALL) { printf(" SHEMU_FLAG_SYSCALL\n"); } if (ctx.Flags & SHEMU_FLAG_STACK_STR) { printf(" SHEMU_FLAG_STACK_STR\n"); } if (ctx.Flags & SHEMU_FLAG_TIB_ACCESS_WOW32) { printf(" SHEMU_FLAG_TIB_ACCESS_WOW32\n"); } if (ctx.Flags & SHEMU_FLAG_HEAVENS_GATE) { printf(" SHEMU_FLAG_HEAVENS_GATE\n"); } if (ctx.Flags & SHEMU_FLAG_STACK_PIVOT) { printf(" SHEMU_FLAG_STACK_PIVOT\n"); } if (ctx.Flags & SHEMU_FLAG_SUD_ACCESS) { printf(" SHEMU_FLAG_SUD_ACCESS\n"); } if (ctx.Flags & SHEMU_FLAG_KPCR_ACCESS) { printf(" SHEMU_FLAG_KPCR_ACCESS\n"); } if (ctx.Flags & SHEMU_FLAG_SWAPGS) { printf(" SHEMU_FLAG_SWAPGS\n"); } if (ctx.Flags & SHEMU_FLAG_SYSCALL_MSR_READ) { printf(" SHEMU_FLAG_SYSCALL_MSR_READ\n"); } if (ctx.Flags & SHEMU_FLAG_SYSCALL_MSR_WRITE) { printf(" SHEMU_FLAG_SYSCALL_MSR_WRITE\n"); } if (ctx.Flags & SHEMU_FLAG_SIDT) { printf(" SHEMU_FLAG_SIDT\n"); } if (fNameDecoded != NULL) { hFile = CreateFileA(fNameDecoded, GENERIC_WRITE, FILE_SHARE_READ, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (INVALID_HANDLE_VALUE == hFile) { printf("Could not open the file %s : 0x%08x\n", fNameDecoded, GetLastError()); goto cleanup_and_exit; } WriteFile(hFile, (BYTE *)ctx.Shellcode, (DWORD)fsize, &outSize, NULL); if (outSize == 0) { printf("No bytes written to %s!\n", fNameDecoded); } CloseHandle(hFile); } cleanup_and_exit: if (NULL != fNameDecoded) { free(fNameDecoded); } if (NULL != ctx.Shellcode) { free(ctx.Shellcode); } if (NULL != ctx.Stack) { free(ctx.Stack); } if (NULL != ctx.Intbuf) { free(ctx.Intbuf); } } void print_help() { uint32_t major, minor, revision; char *date, *time; NdGetVersion(&major, &minor, &revision, &date, &time); printf("bddisasm version %u.%u.%u, built on %s %s\n", major, minor, revision, date, time); printf("\n"); printf("IMPORTANT:\n"); printf(" This tool is only meant to exemplify bddisasm integration.\n"); printf("\n"); printf("USAGE:\n"); printf(" disasm COMMAND INPUT MODE [OPTIONS]\n"); printf("\n"); printf("COMMAND can be one of:\n"); printf(" decode - Will decode the input, and print each instruction (default).\n"); printf(" shemu - Will run the shellcode-emulator on the input, and print the emulation trace.\n"); printf("\n"); printf("INPUT is mandatory and can be one of:\n"); printf(" -f file - Specify input `file` name.\n"); printf(" -h hex - Specify input `hex` string. Accepted formats are:\n"); printf(" Plain hex string; example: 33C090CCC3\n"); printf(" Escaped hex string; example: \\x33\\xC0\\x90\\xCC\\xC3\n"); printf("\n"); printf("MODE sets the decode mode:\n"); printf(" -b16 - Decode in 16-bit mode.\n"); printf(" -b32 - Decode in 32-bit mode.\n"); printf(" -b64 - Decode in 64-bit mode (default).\n"); printf("\n"); printf("OPTIONS which are common among different modes:\n"); printf(" -o offset - Start processing from the indicated `offset` (default is 0).\n"); printf(" -r rip - Use the indicated `rip` for disassembly (default is 0).\n"); printf(" -v vendor - Set prefered vendor (default is any). The following are valid `vendor` values:\n"); printf(" intel, amd, cyrix, mpx, any\n"); printf(" -t feature - Set prefered feature mode (default is all). The following are valid `feature` values (multiple can be used):\n"); printf(" none, all, mpx, cet, cldm, piti\n"); printf("\n"); printf("OPTIONS valid only with decode command:\n"); printf(" -hl - Highlight instruction parts. The colors used are:\n"); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE|FOREGROUND_GREEN|FOREGROUND_RED|FOREGROUND_INTENSITY); printf(" light white prefixes\n"); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_GREEN|FOREGROUND_INTENSITY); printf(" light green opcodes\n"); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_GREEN|FOREGROUND_RED|FOREGROUND_INTENSITY); printf(" light yellow modrm and sib\n"); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE|FOREGROUND_INTENSITY); printf(" light blue displacement\n"); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_RED|FOREGROUND_INTENSITY); printf(" light red relative offset, immediate, address\n"); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), FOREGROUND_BLUE|FOREGROUND_GREEN|FOREGROUND_RED); printf(" -nv - Don't print disassembly. Use this only for performance tests.\n"); printf(" -iv - Print performance statistics.\n"); printf(" -exi - Print extended info about instructions.\n"); printf(" -bits - Print the instruction bit fields.\n"); printf(" -skip16 - Skip 16 bytes after each decoded instruction. Useful when decoding invalid instructions.\n"); printf("\n"); printf("OPTIONS valid only with shemu command:\n"); printf(" -reg val - Set register `reg` to value `val` for emulation. `reg` must be the plain 64-bit register name (ie: rax).\n"); printf(" -k - Specify kernel mode for shemu emulation (default is user-mode).\n"); printf(" -bw - Bypass self-modifications in shemu.\n"); printf("\n"); printf("\n"); printf("EXAMPLES:\n"); printf(" Decode 64-bit code from file test.bin:\n"); printf(" disasm -f test.bin\n"); printf(" disasm -b64 -f test.bin\n"); printf(" disasm decode -b64 -f test.bin\n"); printf(" Decode 64-bit from a hex-buffer, and display extended instruction information:\n"); printf(" disasm -b64 -h 909033C0 -exi\n"); printf(" Decode from hex-string, highlight instruction components & display instruction bitfields:\n"); printf(" disasm -h 90505833C0E80000000058CC -hl -bits\n"); printf(" Emulate a potential 32-bit shellcode from test file shell.bin:\n"); printf(" disasm shemu -b32 -f shell.bin\n"); printf(" Emulate a potential 32-bit shellcode from test file shell.bin, and specify some input registers:\n"); printf(" disasm shemu -b32 -f shell.bin -rax 0x100 -rcx 0xABCD -rsp 0x1000\n"); printf(" Run a quick benchmark on file test.bin:\n"); printf(" disasm -f test.bin -nv -iv\n"); printf("\n"); } void cleanup_context( __inout DISASM_OPTIONS *Options ) { if (Options->InputMode == inputFile) { if (NULL != Options->Buffer) { UnmapViewOfFile(Options->Buffer); } if (NULL != Options->HandleMapping && INVALID_HANDLE_VALUE != Options->HandleMapping) { CloseHandle(Options->HandleMapping); } if (NULL != Options->HandleFile && INVALID_HANDLE_VALUE != Options->HandleFile) { CloseHandle(Options->HandleFile); } } } _Success_(return) BOOLEAN parse_input( __inout DISASM_OPTIONS* Options ) { static BYTE hexbuf[4096]; if (inputNone == Options->InputMode) { printf("Expecting an input mode: either -f or -h!\n"); return FALSE; } if (inputFile == Options->InputMode) { // Open the file. Options->HandleFile = CreateFileA(Options->FileName, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (INVALID_HANDLE_VALUE == Options->HandleFile) { printf("Couldn't open file '%s': 0x%08x\n", Options->FileName, GetLastError()); cleanup_context(Options); return FALSE; } // Create a file mapping. Options->HandleMapping = CreateFileMappingA(Options->HandleFile, NULL, PAGE_READWRITE, 0, 0, "DisasmFile"); if (NULL == Options->HandleMapping) { printf("Couldn't create file mapping for '%s': 0x%08x\n", Options->FileName, GetLastError()); cleanup_context(Options); return FALSE; } // Map the file. Options->Buffer = (BYTE *)MapViewOfFile(Options->HandleMapping, FILE_MAP_ALL_ACCESS, 0, 0, 0); if (NULL == Options->Buffer) { printf("Couldn't map the view for '%s': 0x%08x\n", Options->FileName, GetLastError()); cleanup_context(Options); return FALSE; } Options->Size = GetFileSize(Options->HandleFile, NULL); } else { DWORD idx, sx = 0, mx, of; Options->Size = (DWORD)strlen(Options->FileName); if (Options->Size < 2) { printf("Min 1-byte buffer needed!\n"); return FALSE; } if (Options->Size % 2 == 1) { printf("Even-sized hex buffer expected!\n"); return FALSE; } if (Options->FileName[0] == '\\' && Options->FileName[1] == 'x') { sx = 1; } if (sx && Options->Size < 4) { printf("Min 1-byte buffer needed!\n"); return FALSE; } if (sx) { mx = 4; of = 2; } else { mx = 2; of = 0; } if (Options->Size / mx > sizeof(hexbuf)) { printf("Max %zu bytes buffer accepted!\n", sizeof(hexbuf)); return FALSE; } for (idx = 0; idx < Options->Size / mx; idx++) { hexbuf[idx] = ((hex_to_bin(Options->FileName[idx * mx + of]) << 4) | (hex_to_bin(Options->FileName[idx * mx + of + 1]))) & 0xFF; } Options->FileName = NULL; Options->Size /= sx ? 4 : 2; Options->Buffer = hexbuf; } if (Options->Offset >= Options->Size) { printf("The offset exceeds the buffer size!\n"); cleanup_context(Options); return FALSE; } return TRUE; } _Success_(return) BOOLEAN parse_arguments( __in int argc, __in char* argv[], __out DISASM_OPTIONS *Options ) { int i; if (argc < 2 || NULL == argv) { print_help(); return FALSE; } memset(Options, 0, sizeof(*Options)); // Initialize default options. Options->Command = commandDecode; Options->Mode = ND_CODE_64; Options->Ring = 3; Options->Print = TRUE; Options->Vendor = ND_VEND_ANY; Options->Feature = ND_FEAT_ALL; i = 1; while (i < argc) { DWORD gprIdx; if (match_gpr(argv[i], &gprIdx)) { if (i + 1 >= argc) { printf("No value given for %s!\n", argv[i]); } else { Options->ShemuRegs[gprIdx] = (size_t)strtoull(argv[i + 1], NULL, 0); Options->UseShemuRegs = TRUE; i++; } } else if (strcmp(argv[i], "shemu") == 0) { Options->Command = commandShemu; } else if (argv[i][0] == '-' && argv[i][1] == 'f' && argv[i][2] == 0) { if (i + 1 < argc) { Options->InputMode = inputFile; Options->FileName = argv[i + 1]; i++; } } else if (argv[i][0] == '-' && argv[i][1] == 'h' && argv[i][2] == 0) { if (i + 1 < argc) { Options->InputMode = inputHex; Options->FileName = argv[i + 1]; i++; } } else if (argv[i][0] == '-' && argv[i][1] == 'o' && argv[i][2] == 0) { if (i + 1 < argc) { sscanf_s(argv[i + 1], "%zx", &Options->Offset); i++; } } else if (argv[i][0] == '-' && argv[i][1] == 'r' && argv[i][2] == 0) { if (i + 1 < argc) { sscanf_s(argv[i + 1], "%zx", &Options->Rip); i++; } } else if (argv[i][0] == '-' && argv[i][1] == 'k' && argv[i][2] == 0) { Options->Ring = 0; } else if (argv[i][0] == '-' && argv[i][1] == 'b' && argv[i][2] == 'w' && argv[i][3] == 0) { Options->BypassSelfWrites = TRUE; } else if (0 == strcmp(argv[i], "-b16")) { Options->Mode = ND_CODE_16; } else if (0 == strcmp(argv[i], "-b32")) { Options->Mode = ND_CODE_32; } else if (0 == strcmp(argv[i], "-b64")) { Options->Mode = ND_CODE_64; } else if (0 == strcmp(argv[i], "-v intel")) { Options->Vendor = ND_VEND_INTEL; } else if (0 == strcmp(argv[i], "-v amd")) { Options->Vendor = ND_VEND_AMD; } else if (0 == strcmp(argv[i], "-v geode")) { Options->Vendor = ND_VEND_GEODE; } else if (0 == strcmp(argv[i], "-v cyrix")) { Options->Vendor = ND_VEND_CYRIX; } else if (0 == strcmp(argv[i], "-v any")) { Options->Vendor = ND_VEND_ANY; } else if (0 == strcmp(argv[i], "-t all")) { Options->Feature = ND_FEAT_ALL; } else if (0 == strcmp(argv[i], "-t mpx")) { if (Options->Feature == ND_FEAT_ALL) { Options->Feature = 0; } Options->Feature |= ND_FEAT_MPX; } else if (0 == strcmp(argv[i], "-t cet")) { if (Options->Feature == ND_FEAT_ALL) { Options->Feature = 0; } Options->Feature |= ND_FEAT_CET; } else if (0 == strcmp(argv[i], "-t cldm")) { if (Options->Feature == ND_FEAT_ALL) { Options->Feature = 0; } Options->Feature |= ND_FEAT_CLDEMOTE; } else if (0 == strcmp(argv[i], "-t piti")) { if (Options->Feature == ND_FEAT_ALL) { Options->Feature = 0; } Options->Feature |= ND_FEAT_PITI; } else if (0 == strcmp(argv[i], "-t none")) { Options->Feature = ND_FEAT_NONE; } else if (0 == strcmp(argv[i], "-nv")) { Options->Print = FALSE; } else if (0 == strcmp(argv[i], "-hl")) { Options->Highlight = TRUE; } else if (0 == strcmp(argv[i], "-iv")) { Options->Stats = TRUE; } else if (0 == strcmp(argv[i], "-exi")) { Options->ExtendedInfo = TRUE; } else if (0 == strcmp(argv[i], "-bits")) { Options->BitFields = TRUE; } else if (0 == strcmp(argv[i], "-skip16")) { Options->Skip16 = TRUE; } else { printf("Unknown option: '%s'\n", argv[i]); } i++; } if (!parse_input(Options)) { printf("Could not find a valid input!\n"); return FALSE; } return TRUE; } int main( __in int argc, __in char* argv[] ) { DISASM_OPTIONS options = { 0 }; if (!parse_arguments(argc, argv, &options)) { return -1; } if (options.Command == commandShemu) { handle_shemu(&options); } else { handle_disasm(&options); } cleanup_context(&options); return 0; }