qubes-installer-qubes-os/anaconda/pyanaconda/storage/partitioning.py

1954 lines
76 KiB
Python
Raw Normal View History

# partitioning.py
# Disk partitioning functions.
#
# Copyright (C) 2009 Red Hat, Inc.
#
# This copyrighted material is made available to anyone wishing to use,
# modify, copy, or redistribute it subject to the terms and conditions of
# the GNU General Public License v.2, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY expressed or implied, including the implied warranties of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details. You should have received a copy of the
# GNU General Public License along with this program; if not, write to the
# Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA. Any Red Hat trademarks that are incorporated in the
# source code or documentation are not subject to the GNU General Public
# License and may only be used or replicated with the express permission of
# Red Hat, Inc.
#
# Red Hat Author(s): Dave Lehman <dlehman@redhat.com>
#
import sys
import os
from operator import add, sub, gt, lt
import parted
from pykickstart.constants import *
from pyanaconda.constants import *
from pyanaconda.errors import *
from errors import *
from deviceaction import *
from devices import PartitionDevice, LUKSDevice, devicePathToName
from formats import getFormat
import gettext
_ = lambda x: gettext.ldgettext("anaconda", x)
import logging
log = logging.getLogger("storage")
def _getCandidateDisks(storage):
""" Return a list of disks with space for a default-sized partition. """
disks = []
for disk in storage.partitioned:
if storage.config.clearPartDisks and \
(disk.name not in storage.config.clearPartDisks):
continue
part = disk.format.firstPartition
while part:
if not part.type & parted.PARTITION_FREESPACE:
part = part.nextPartition()
continue
if part.getSize(unit="MB") > PartitionDevice.defaultSize:
disks.append(disk)
break
part = part.nextPartition()
return disks
def _scheduleImplicitPartitions(storage, disks):
""" Schedule creation of a lvm/btrfs partition on each disk in disks. """
# create a separate pv or btrfs partition for each disk with free space
devs = []
# only schedule the partitions if either lvm or btrfs autopart was chosen
if storage.autoPartType not in (AUTOPART_TYPE_LVM, AUTOPART_TYPE_BTRFS):
return devs
for disk in disks:
if storage.encryptedAutoPart:
fmt_type = "luks"
fmt_args = {"passphrase": storage.encryptionPassphrase,
"cipher": storage.encryptionCipher,
"escrow_cert": storage.autoPartEscrowCert,
"add_backup_passphrase": storage.autoPartAddBackupPassphrase}
else:
if storage.autoPartType == AUTOPART_TYPE_LVM:
fmt_type = "lvmpv"
else:
fmt_type = "btrfs"
fmt_args = {}
part = storage.newPartition(fmt_type=fmt_type,
fmt_args=fmt_args,
grow=True,
parents=[disk])
storage.createDevice(part)
devs.append(part)
return devs
def _schedulePartitions(storage, disks):
""" Schedule creation of autopart partitions. """
# basis for requests with requiredSpace is the sum of the sizes of the
# two largest free regions
all_free = getFreeRegions(disks)
all_free.sort(key=lambda f: f.length, reverse=True)
if not all_free:
# this should never happen since we've already filtered the disks
# to those with at least 500MB free
log.error("no free space on disks %s" % ([d.name for d in disks],))
return
free = all_free[0].getSize()
if len(all_free) > 1:
free += all_free[1].getSize()
# The boot disk must be set at this point. See if any platform-specific
# stage1 device we might allocate already exists on the boot disk.
stage1_device = None
for device in storage.devices:
if storage.bootloader.stage1_disk not in device.disks:
continue
if storage.bootloader.is_valid_stage1_device(device):
stage1_device = device
break
#
# First pass is for partitions only. We'll do LVs later.
#
for request in storage.autoPartitionRequests:
if (request.lv and storage.autoPartType == AUTOPART_TYPE_LVM) or \
(request.btr and storage.autoPartType == AUTOPART_TYPE_BTRFS):
continue
if request.requiredSpace and request.requiredSpace > free:
continue
elif request.fstype in ("prepboot", "efi", "hfs+") and \
(storage.bootloader.skip_bootloader or stage1_device):
# there should never be a need for more than one of these
# partitions, so skip them.
log.info("skipping unneeded stage1 %s request" % request.fstype)
log.debug(request)
if request.fstype == "efi":
# Set the mountpoint for the existing EFI boot partition
stage1_device.format.mountpoint = "/boot/efi"
log.debug(stage1_device)
continue
elif request.fstype == "biosboot":
is_gpt = (stage1_device and
getattr(stage1_device.format, "labelType", None) == "gpt")
has_bios_boot = (stage1_device and
any([p.format.type == "biosboot"
for p in storage.partitions
if p.disk == stage1_device]))
if (storage.bootloader.skip_bootloader or
not (stage1_device and stage1_device.isDisk and
is_gpt and not has_bios_boot)):
# there should never be a need for more than one of these
# partitions, so skip them.
log.info("skipping unneeded stage1 %s request" % request.fstype)
log.debug(request)
log.debug(stage1_device)
continue
if request.encrypted and storage.encryptedAutoPart:
fmt_type = "luks"
fmt_args = {"passphrase": storage.encryptionPassphrase,
"cipher": storage.encryptionCipher,
"escrow_cert": storage.autoPartEscrowCert,
"add_backup_passphrase": storage.autoPartAddBackupPassphrase}
else:
fmt_type = request.fstype
fmt_args = {}
dev = storage.newPartition(fmt_type=fmt_type,
fmt_args=fmt_args,
size=request.size,
grow=request.grow,
maxsize=request.maxSize,
mountpoint=request.mountpoint,
parents=disks,
weight=request.weight)
# schedule the device for creation
storage.createDevice(dev)
if request.encrypted and storage.encryptedAutoPart:
luks_fmt = getFormat(request.fstype,
device=dev.path,
mountpoint=request.mountpoint)
luks_dev = LUKSDevice("luks-%s" % dev.name,
format=luks_fmt,
size=dev.size,
parents=dev)
storage.createDevice(luks_dev)
# make sure preexisting broken lvm/raid configs get out of the way
return
def _scheduleVolumes(storage, devs):
""" Schedule creation of autopart lvm/btrfs volumes. """
if not devs:
return
if storage.autoPartType == AUTOPART_TYPE_LVM:
new_container = storage.newVG
new_volume = storage.newLV
format_name = "lvmpv"
else:
new_container = storage.newBTRFS
new_volume = storage.newBTRFS
format_name = "btrfs"
if storage.encryptedAutoPart:
pvs = []
for dev in devs:
pv = LUKSDevice("luks-%s" % dev.name,
format=getFormat(format_name, device=dev.path),
size=dev.size,
parents=dev)
pvs.append(pv)
storage.createDevice(pv)
else:
pvs = devs
# create a vg containing all of the autopart pvs
container = new_container(parents=pvs)
storage.createDevice(container)
#
# Convert storage.autoPartitionRequests into Device instances and
# schedule them for creation.
#
# Second pass, for LVs only.
for request in storage.autoPartitionRequests:
btr = storage.autoPartType == AUTOPART_TYPE_BTRFS and request.btr
lv = storage.autoPartType == AUTOPART_TYPE_LVM and request.lv
if not btr and not lv:
continue
# required space isn't relevant on btrfs
if lv and \
request.requiredSpace and request.requiredSpace > container.size:
continue
if request.fstype is None:
if btr:
# btrfs volumes can only contain btrfs filesystems
request.fstype = "btrfs"
else:
request.fstype = storage.defaultFSType
kwargs = {"mountpoint": request.mountpoint,
"fmt_type": request.fstype}
if lv:
kwargs.update({"parents": [container],
"grow": request.grow,
"maxsize": request.maxSize,
"size": request.size,
"singlePV": request.singlePV})
else:
kwargs.update({"parents": [container],
"size": request.size,
"subvol": True})
dev = new_volume(**kwargs)
# schedule the device for creation
storage.createDevice(dev)
def doAutoPartition(storage, data):
log.debug("doAutoPart: %s" % storage.doAutoPart)
log.debug("encryptedAutoPart: %s" % storage.encryptedAutoPart)
log.debug("autoPartType: %s" % storage.autoPartType)
log.debug("clearPartType: %s" % storage.config.clearPartType)
log.debug("clearPartDisks: %s" % storage.config.clearPartDisks)
log.debug("autoPartitionRequests:\n%s" % "".join([str(p) for p in storage.autoPartitionRequests]))
log.debug("storage.disks: %s" % [d.name for d in storage.disks])
log.debug("storage.partitioned: %s" % [d.name for d in storage.partitioned])
log.debug("all names: %s" % [d.name for d in storage.devices])
log.debug("boot disk: %s" % getattr(storage.bootDisk, "name", None))
disks = []
devs = []
if not storage.doAutoPart:
return
if not storage.partitioned:
raise NoDisksError(_("No usable disks selected"))
disks = _getCandidateDisks(storage)
devs = _scheduleImplicitPartitions(storage, disks)
log.debug("candidate disks: %s" % disks)
log.debug("devs: %s" % devs)
if disks == []:
raise NotEnoughFreeSpaceError(_("Not enough free space on disks for "
"automatic partitioning"))
_schedulePartitions(storage, disks)
# run the autopart function to allocate and grow partitions
doPartitioning(storage)
_scheduleVolumes(storage, devs)
# grow LVs
growLVM(storage)
storage.setUpBootLoader()
# now do a full check of the requests
(errors, warnings) = storage.sanityCheck()
for error in errors:
log.error(error)
for warning in warnings:
log.warning(warning)
if errors:
raise PartitioningError("\n".join(errors))
def partitionCompare(part1, part2):
""" More specifically defined partitions come first.
< 1 => x < y
0 => x == y
> 1 => x > y
"""
ret = 0
if part1.req_base_weight:
ret -= part1.req_base_weight
if part2.req_base_weight:
ret += part2.req_base_weight
# more specific disk specs to the front of the list
# req_disks being empty is equivalent to it being an infinitely long list
if part1.req_disks and not part2.req_disks:
ret -= 500
elif not part1.req_disks and part2.req_disks:
ret += 500
else:
ret += cmp(len(part1.req_disks), len(part2.req_disks)) * 500
# primary-only to the front of the list
ret -= cmp(part1.req_primary, part2.req_primary) * 200
# fixed size requests to the front
ret += cmp(part1.req_grow, part2.req_grow) * 100
# larger requests go to the front of the list
ret -= cmp(part1.req_base_size, part2.req_base_size) * 50
# potentially larger growable requests go to the front
if part1.req_grow and part2.req_grow:
if not part1.req_max_size and part2.req_max_size:
ret -= 25
elif part1.req_max_size and not part2.req_max_size:
ret += 25
else:
ret -= cmp(part1.req_max_size, part2.req_max_size) * 25
# give a little bump based on mountpoint
if hasattr(part1.format, "mountpoint") and \
hasattr(part2.format, "mountpoint"):
ret += cmp(part1.format.mountpoint, part2.format.mountpoint) * 10
if ret > 0:
ret = 1
elif ret < 0:
ret = -1
return ret
def getNextPartitionType(disk, no_primary=None):
""" Find the type of partition to create next on a disk.
Return a parted partition type value representing the type of the
next partition we will create on this disk.
If there is only one free primary partition and we can create an
extended partition, we do that.
If there are free primary slots and an extended partition we will
recommend creating a primary partition. This can be overridden
with the keyword argument no_primary.
Arguments:
disk -- a parted.Disk instance representing the disk
Keyword arguments:
no_primary -- given a choice between primary and logical
partitions, prefer logical
"""
part_type = None
extended = disk.getExtendedPartition()
supports_extended = disk.supportsFeature(parted.DISK_TYPE_EXTENDED)
logical_count = len(disk.getLogicalPartitions())
max_logicals = disk.getMaxLogicalPartitions()
primary_count = disk.primaryPartitionCount
if primary_count < disk.maxPrimaryPartitionCount:
if primary_count == disk.maxPrimaryPartitionCount - 1:
# can we make an extended partition? now's our chance.
if not extended and supports_extended:
part_type = parted.PARTITION_EXTENDED
elif not extended:
# extended partitions not supported. primary or nothing.
if not no_primary:
part_type = parted.PARTITION_NORMAL
else:
# there is an extended and a free primary
if not no_primary:
part_type = parted.PARTITION_NORMAL
elif logical_count < max_logicals:
# we have an extended with logical slots, so use one.
part_type = parted.PARTITION_LOGICAL
else:
# there are two or more primary slots left. use one unless we're
# not supposed to make primaries.
if not no_primary:
part_type = parted.PARTITION_NORMAL
elif extended and logical_count < max_logicals:
part_type = parted.PARTITION_LOGICAL
elif extended and logical_count < max_logicals:
part_type = parted.PARTITION_LOGICAL
return part_type
def getBestFreeSpaceRegion(disk, part_type, req_size,
boot=None, best_free=None, grow=None):
""" Return the "best" free region on the specified disk.
For non-boot partitions, we return the largest free region on the
disk. For boot partitions, we return the first region that is
large enough to hold the partition.
Partition type (parted's PARTITION_NORMAL, PARTITION_LOGICAL) is
taken into account when locating a suitable free region.
For locating the best region from among several disks, the keyword
argument best_free allows the specification of a current "best"
free region with which to compare the best from this disk. The
overall best region is returned.
Arguments:
disk -- the disk (a parted.Disk instance)
part_type -- the type of partition we want to allocate
(one of parted's partition type constants)
req_size -- the requested size of the partition (in MB)
Keyword arguments:
boot -- indicates whether this will be a bootable partition
(boolean)
best_free -- current best free region for this partition
grow -- indicates whether this is a growable request
"""
log.debug("getBestFreeSpaceRegion: disk=%s part_type=%d req_size=%dMB "
"boot=%s best=%s grow=%s" %
(disk.device.path, part_type, req_size, boot, best_free, grow))
extended = disk.getExtendedPartition()
for _range in disk.getFreeSpaceRegions():
if extended:
# find out if there is any overlap between this region and the
# extended partition
log.debug("looking for intersection between extended (%d-%d) and free (%d-%d)" %
(extended.geometry.start, extended.geometry.end, _range.start, _range.end))
# parted.Geometry.overlapsWith can handle this
try:
free_geom = extended.geometry.intersect(_range)
except ArithmeticError:
# this freespace region does not lie within the extended
# partition's geometry
free_geom = None
if (free_geom and part_type == parted.PARTITION_NORMAL) or \
(not free_geom and part_type == parted.PARTITION_LOGICAL):
log.debug("free region not suitable for request")
continue
if part_type == parted.PARTITION_NORMAL:
# we're allocating a primary and the region is not within
# the extended, so we use the original region
free_geom = _range
else:
free_geom = _range
if free_geom.start > disk.maxPartitionStartSector:
log.debug("free range start sector beyond max for new partitions")
continue
if boot:
free_start_mb = sectorsToSize(free_geom.start,
disk.device.sectorSize)
req_end_mb = free_start_mb + req_size
if req_end_mb > 2*1024*1024:
log.debug("free range position would place boot req above 2TB")
continue
log.debug("current free range is %d-%d (%dMB)" % (free_geom.start,
free_geom.end,
free_geom.getSize()))
free_size = free_geom.getSize()
# For boot partitions, we want the first suitable region we find.
# For growable or extended partitions, we want the largest possible
# free region.
# For all others, we want the smallest suitable free region.
if grow or part_type == parted.PARTITION_EXTENDED:
op = gt
else:
op = lt
if req_size <= free_size:
if not best_free or op(free_geom.length, best_free.length):
best_free = free_geom
if boot:
# if this is a bootable partition we want to
# use the first freespace region large enough
# to satisfy the request
break
return best_free
def sectorsToSize(sectors, sectorSize):
""" Convert length in sectors to size in MB.
Arguments:
sectors - sector count
sectorSize - sector size for the device, in bytes
"""
return (sectors * sectorSize) / (1024.0 * 1024.0)
def sizeToSectors(size, sectorSize):
""" Convert size in MB to length in sectors.
Arguments:
size - size in MB
sectorSize - sector size for the device, in bytes
"""
return (size * 1024.0 * 1024.0) / sectorSize
def removeNewPartitions(disks, partitions):
""" Remove newly added input partitions from input disks.
Arguments:
disks -- list of StorageDevice instances with DiskLabel format
partitions -- list of PartitionDevice instances
"""
log.debug("removing all non-preexisting partitions %s from disk(s) %s"
% (["%s(id %d)" % (p.name, p.id) for p in partitions
if not p.exists],
[d.name for d in disks]))
for part in partitions:
if part.partedPartition and part.disk in disks:
if part.exists:
# we're only removing partitions that don't physically exist
continue
if part.isExtended:
# these get removed last
continue
part.disk.format.partedDisk.removePartition(part.partedPartition)
part.partedPartition = None
part.disk = None
for disk in disks:
# remove empty extended so it doesn't interfere
extended = disk.format.extendedPartition
if extended and not disk.format.logicalPartitions:
log.debug("removing empty extended partition from %s" % disk.name)
disk.format.partedDisk.removePartition(extended)
def addPartition(disklabel, free, part_type, size):
""" Return new partition after adding it to the specified disk.
Arguments:
disklabel -- disklabel instance to add partition to
free -- where to add the partition (parted.Geometry instance)
part_type -- partition type (parted.PARTITION_* constant)
size -- size (in MB) of the new partition
The new partition will be aligned.
Return value is a parted.Partition instance.
"""
start = free.start
if not disklabel.alignment.isAligned(free, start):
start = disklabel.alignment.alignNearest(free, start)
if disklabel.labelType == "sun" and start == 0:
start = disklabel.alignment.alignUp(free, start)
if part_type == parted.PARTITION_LOGICAL:
# make room for logical partition's metadata
start += disklabel.alignment.grainSize
if start != free.start:
log.debug("adjusted start sector from %d to %d" % (free.start, start))
if part_type == parted.PARTITION_EXTENDED:
end = free.end
length = end - start + 1
else:
# size is in MB
length = sizeToSectors(size, disklabel.partedDevice.sectorSize)
end = start + length - 1
if not disklabel.endAlignment.isAligned(free, end):
end = disklabel.endAlignment.alignNearest(free, end)
log.debug("adjusted length from %d to %d" % (length, end - start + 1))
if start > end:
raise PartitioningError(_("unable to allocate aligned partition"))
new_geom = parted.Geometry(device=disklabel.partedDevice,
start=start,
end=end)
max_length = disklabel.partedDisk.maxPartitionLength
if max_length and new_geom.length > max_length:
raise PartitioningError(_("requested size exceeds maximum allowed"))
# create the partition and add it to the disk
partition = parted.Partition(disk=disklabel.partedDisk,
type=part_type,
geometry=new_geom)
constraint = parted.Constraint(exactGeom=new_geom)
disklabel.partedDisk.addPartition(partition=partition,
constraint=constraint)
return partition
def getFreeRegions(disks):
""" Return a list of free regions on the specified disks.
Arguments:
disks -- list of parted.Disk instances
Return value is a list of unaligned parted.Geometry instances.
"""
free = []
for disk in disks:
for f in disk.format.partedDisk.getFreeSpaceRegions():
if f.length > 0:
free.append(f)
return free
def updateExtendedPartitions(storage, disks):
# XXX hack -- if we created any extended partitions we need to add
# them to the tree now
for disk in disks:
extended = disk.format.extendedPartition
if not extended:
# remove any obsolete extended partitions
for part in storage.partitions:
if part.disk == disk and part.isExtended:
if part.exists:
storage.destroyDevice(part)
else:
storage.devicetree._removeDevice(part, moddisk=False)
continue
extendedName = devicePathToName(extended.getDeviceNodeName())
# remove any obsolete extended partitions
for part in storage.partitions:
if part.disk == disk and part.isExtended and \
part.partedPartition not in disk.format.partitions:
if part.exists:
storage.destroyDevice(part)
else:
storage.devicetree._removeDevice(part, moddisk=False)
device = storage.devicetree.getDeviceByName(extendedName)
if device:
if not device.exists:
# created by us, update partedPartition
device.partedPartition = extended
continue
# This is a little odd because normally instantiating a partition
# that does not exist means leaving self.parents empty and instead
# populating self.req_disks. In this case, we need to skip past
# that since this partition is already defined.
device = PartitionDevice(extendedName, parents=disk)
device.parents = [disk]
device.partedPartition = extended
# just add the device for now -- we'll handle actions at the last
# moment to simplify things
storage.devicetree._addDevice(device)
def doPartitioning(storage):
""" Allocate and grow partitions.
When this function returns without error, all PartitionDevice
instances must have their parents set to the disk they are
allocated on, and their partedPartition attribute set to the
appropriate parted.Partition instance from their containing
disk. All req_xxxx attributes must be unchanged.
Arguments:
storage - Main anaconda Storage instance
Keyword/Optional Arguments:
None
"""
if not hasattr(storage.platform, "diskLabelTypes"):
raise StorageError(_("can't allocate partitions without platform data"))
disks = storage.partitioned
if storage.config.exclusiveDisks:
disks = [d for d in disks if d.name in storage.config.exclusiveDisks]
for disk in disks:
try:
disk.setup()
except DeviceError as (msg, name):
log.error("failed to set up disk %s: %s" % (name, msg))
raise PartitioningError(_("disk %s inaccessible") % disk.name)
partitions = storage.partitions[:]
for part in storage.partitions:
part.req_bootable = False
if part.exists:
# if the partition is preexisting or part of a complex device
# then we shouldn't modify it
partitions.remove(part)
continue
if not part.exists:
# start over with flexible-size requests
part.req_size = part.req_base_size
try:
storage.bootDevice.req_bootable = True
except AttributeError:
# there's no stage2 device. hopefully it's temporary.
pass
removeNewPartitions(disks, partitions)
free = getFreeRegions(disks)
try:
allocatePartitions(storage, disks, partitions, free)
growPartitions(disks, partitions, free, size_sets=storage.size_sets)
except Exception:
raise
else:
# Mark all growable requests as no longer growable.
for partition in storage.partitions:
log.debug("fixing size of %s at %.2f" % (partition, partition.size))
partition.req_grow = False
partition.req_base_size = partition.size
partition.req_size = partition.size
finally:
# these are only valid for one allocation run
storage.size_sets = []
# The number and thus the name of partitions may have changed now,
# allocatePartitions() takes care of this for new partitions, but not
# for pre-existing ones, so we update the name of all partitions here
for part in storage.partitions:
# leave extended partitions as-is -- we'll handle them separately
if part.isExtended:
continue
part.updateName()
updateExtendedPartitions(storage, disks)
for part in [p for p in storage.partitions if not p.exists]:
problem = part.checkSize()
if problem < 0:
raise PartitioningError(_("partition is too small for %(format)s formatting "
"(allowable size is %(minSize)d MB to %(maxSize)d MB)")
% {"format": part.format.name, "minSize": part.format.minSize,
"maxSize": part.format.maxSize})
elif problem > 0:
raise PartitioningError(_("partition is too large for %(format)s formatting "
"(allowable size is %(minSize)d MB to %(maxSize)d MB)")
% {"format": part.format.name, "minSize": part.format.minSize,
"maxSize": part.format.maxSize})
def allocatePartitions(storage, disks, partitions, freespace):
""" Allocate partitions based on requested features.
Non-existing partitions are sorted according to their requested
attributes, and then allocated.
The basic approach to sorting is that the more specifically-
defined a request is, the earlier it will be allocated. See
the function partitionCompare for details on the sorting
criteria.
The PartitionDevice instances will have their name and parents
attributes set once they have been allocated.
"""
log.debug("allocatePartitions: disks=%s ; partitions=%s" %
([d.name for d in disks],
["%s(id %d)" % (p.name, p.id) for p in partitions]))
new_partitions = [p for p in partitions if not p.exists]
new_partitions.sort(cmp=partitionCompare)
# the following dicts all use device path strings as keys
disklabels = {} # DiskLabel instances for each disk
all_disks = {} # StorageDevice for each disk
for disk in disks:
if disk.path not in disklabels.keys():
disklabels[disk.path] = disk.format
all_disks[disk.path] = disk
removeNewPartitions(disks, new_partitions)
for _part in new_partitions:
if _part.partedPartition and _part.isExtended:
# ignore new extendeds as they are implicit requests
continue
# obtain the set of candidate disks
req_disks = []
if _part.req_disks:
# use the requested disk set
req_disks = _part.req_disks
else:
# no disks specified means any disk will do
req_disks = disks
# sort the disks, making sure the boot disk is first
req_disks.sort(key=lambda d: d.name, cmp=storage.compareDisks)
for disk in req_disks:
if storage.bootDisk and disk == storage.bootDisk:
boot_index = req_disks.index(disk)
req_disks.insert(0, req_disks.pop(boot_index))
boot = _part.req_base_weight > 1000
log.debug("allocating partition: %s ; id: %d ; disks: %s ;\n"
"boot: %s ; primary: %s ; size: %dMB ; grow: %s ; "
"max_size: %s" % (_part.name, _part.id,
[d.name for d in req_disks],
boot, _part.req_primary,
_part.req_size, _part.req_grow,
_part.req_max_size))
free = None
use_disk = None
part_type = None
growth = 0
# loop through disks
for _disk in req_disks:
disklabel = disklabels[_disk.path]
sectorSize = disklabel.partedDevice.sectorSize
best = None
current_free = free
# for growable requests, we don't want to pass the current free
# geometry to getBestFreeRegion -- this allows us to try the
# best region from each disk and choose one based on the total
# growth it allows
if _part.req_grow:
current_free = None
log.debug("checking freespace on %s" % _disk.name)
new_part_type = getNextPartitionType(disklabel.partedDisk)
if new_part_type is None:
# can't allocate any more partitions on this disk
log.debug("no free partition slots on %s" % _disk.name)
continue
if _part.req_primary and new_part_type != parted.PARTITION_NORMAL:
if (disklabel.partedDisk.primaryPartitionCount <
disklabel.partedDisk.maxPrimaryPartitionCount):
# don't fail to create a primary if there are only three
# primary partitions on the disk (#505269)
new_part_type = parted.PARTITION_NORMAL
else:
# we need a primary slot and none are free on this disk
log.debug("no primary slots available on %s" % _disk.name)
continue
best = getBestFreeSpaceRegion(disklabel.partedDisk,
new_part_type,
_part.req_size,
best_free=current_free,
boot=boot,
grow=_part.req_grow)
if best == free and not _part.req_primary and \
new_part_type == parted.PARTITION_NORMAL:
# see if we can do better with a logical partition
log.debug("not enough free space for primary -- trying logical")
new_part_type = getNextPartitionType(disklabel.partedDisk,
no_primary=True)
if new_part_type:
best = getBestFreeSpaceRegion(disklabel.partedDisk,
new_part_type,
_part.req_size,
best_free=current_free,
boot=boot,
grow=_part.req_grow)
if best and free != best:
update = True
allocated = new_partitions[:new_partitions.index(_part)+1]
if any([p.req_grow for p in allocated]):
log.debug("evaluating growth potential for new layout")
new_growth = 0
for disk_path in disklabels.keys():
log.debug("calculating growth for disk %s" % disk_path)
# Now we check, for growable requests, which of the two
# free regions will allow for more growth.
# set up chunks representing the disks' layouts
temp_parts = []
for _p in new_partitions[:new_partitions.index(_part)]:
if _p.disk.path == disk_path:
temp_parts.append(_p)
# add the current request to the temp disk to set up
# its partedPartition attribute with a base geometry
if disk_path == _disk.path:
_part_type = new_part_type
_free = best
if new_part_type == parted.PARTITION_EXTENDED:
addPartition(disklabel, best, new_part_type,
None)
_part_type = parted.PARTITION_LOGICAL
_free = getBestFreeSpaceRegion(disklabel.partedDisk,
_part_type,
_part.req_size,
boot=boot,
grow=_part.req_grow)
if not _free:
log.info("not enough space after adding "
"extended partition for growth test")
if new_part_type == parted.PARTITION_EXTENDED:
e = disklabel.extendedPartition
disklabel.partedDisk.removePartition(e)
continue
temp_part = addPartition(disklabel,
_free,
_part_type,
_part.req_size)
_part.partedPartition = temp_part
_part.disk = _disk
temp_parts.append(_part)
chunks = getDiskChunks(all_disks[disk_path],
temp_parts, freespace)
# grow all growable requests
disk_growth = 0
disk_sector_size = disklabels[disk_path].partedDevice.sectorSize
for chunk in chunks:
chunk.growRequests()
# record the growth for this layout
new_growth += chunk.growth
disk_growth += chunk.growth
for req in chunk.requests:
log.debug("request %d (%s) growth: %d (%dMB) "
"size: %dMB" %
(req.device.id,
req.device.name,
req.growth,
sectorsToSize(req.growth,
disk_sector_size),
sectorsToSize(req.growth + req.base,
disk_sector_size)))
log.debug("disk %s growth: %d (%dMB)" %
(disk_path, disk_growth,
sectorsToSize(disk_growth,
disk_sector_size)))
disklabel.partedDisk.removePartition(temp_part)
_part.partedPartition = None
_part.disk = None
if new_part_type == parted.PARTITION_EXTENDED:
e = disklabel.extendedPartition
disklabel.partedDisk.removePartition(e)
log.debug("total growth: %d sectors" % new_growth)
# update the chosen free region unless the previous
# choice yielded greater total growth
if free is not None and new_growth <= growth:
log.debug("keeping old free: %d <= %d" % (new_growth,
growth))
update = False
else:
growth = new_growth
if update:
# now we know we are choosing a new free space,
# so update the disk and part type
log.debug("updating use_disk to %s, type: %s"
% (_disk.name, new_part_type))
part_type = new_part_type
use_disk = _disk
log.debug("new free: %d-%d / %dMB" % (best.start,
best.end,
best.getSize()))
log.debug("new free allows for %d sectors of growth" %
growth)
free = best
if free and boot:
# if this is a bootable partition we want to
# use the first freespace region large enough
# to satisfy the request
log.debug("found free space for bootable request")
break
if free is None:
raise PartitioningError(_("not enough free space on disks"))
_disk = use_disk
disklabel = _disk.format
# create the extended partition if needed
if part_type == parted.PARTITION_EXTENDED:
log.debug("creating extended partition")
addPartition(disklabel, free, part_type, None)
# now the extended partition exists, so set type to logical
part_type = parted.PARTITION_LOGICAL
# recalculate freespace
log.debug("recalculating free space")
free = getBestFreeSpaceRegion(disklabel.partedDisk,
part_type,
_part.req_size,
boot=boot,
grow=_part.req_grow)
if not free:
raise PartitioningError(_("not enough free space after "
"creating extended partition"))
partition = addPartition(disklabel, free, part_type, _part.req_size)
log.debug("created partition %s of %dMB and added it to %s" %
(partition.getDeviceNodeName(), partition.getSize(),
disklabel.device))
# this one sets the name
_part.partedPartition = partition
_part.disk = _disk
# parted modifies the partition in the process of adding it to
# the disk, so we need to grab the latest version...
_part.partedPartition = disklabel.partedDisk.getPartitionByPath(_part.path)
class Request(object):
""" A partition request.
Request instances are used for calculating how much to grow
partitions.
"""
def __init__(self, device):
""" Create a Request instance.
Arguments:
"""
self.device = device
self.growth = 0 # growth in sectors
self.max_growth = 0 # max growth in sectors
self.done = not getattr(device, "req_grow", True) # can we grow this
# request more?
self.base = 0 # base sectors
@property
def growable(self):
""" True if this request is growable. """
return getattr(self.device, "req_grow", True)
@property
def id(self):
""" The id of the Device instance this request corresponds to. """
return self.device.id
def __repr__(self):
s = ("%(type)s instance --\n"
"id = %(id)s name = %(name)s growable = %(growable)s\n"
"base = %(base)d growth = %(growth)d max_grow = %(max_grow)d\n"
"done = %(done)s" %
{"type": self.__class__.__name__, "id": self.id,
"name": self.device.name, "growable": self.growable,
"base": self.base, "growth": self.growth,
"max_grow": self.max_growth, "done": self.done})
return s
class PartitionRequest(Request):
def __init__(self, partition):
""" Create a PartitionRequest instance.
Arguments:
partition -- a PartitionDevice instance
"""
super(PartitionRequest, self).__init__(partition)
self.base = partition.partedPartition.geometry.length # base sectors
sector_size = partition.partedPartition.disk.device.sectorSize
if partition.req_grow:
limits = filter(lambda l: l > 0,
[sizeToSectors(partition.req_max_size, sector_size),
sizeToSectors(partition.format.maxSize, sector_size),
partition.partedPartition.disk.maxPartitionLength])
if limits:
max_sectors = min(limits)
self.max_growth = max_sectors - self.base
if self.max_growth <= 0:
# max size is less than or equal to base, so we're done
self.done = True
class LVRequest(Request):
def __init__(self, lv):
""" Create a LVRequest instance.
Arguments:
lv -- an LVMLogicalVolumeDevice instance
"""
super(LVRequest, self).__init__(lv)
# Round up to nearest pe. For growable requests this will mean that
# first growth is to fill the remainder of any unused extent.
self.base = lv.vg.align(lv.req_size, roundup=True) / lv.vg.peSize # pe
if lv.req_grow:
limits = [l / lv.vg.peSize for l in
[lv.vg.align(lv.req_max_size),
lv.vg.align(lv.format.maxSize)] if l > 0]
if limits:
max_units = min(limits)
self.max_growth = max_units - self.base
if self.max_growth <= 0:
# max size is less than or equal to base, so we're done
self.done = True
class Chunk(object):
""" A free region from which devices will be allocated """
def __init__(self, length, requests=None):
""" Create a Chunk instance.
Arguments:
length -- the length of the chunk in allocation units
Keyword Arguments:
requests -- list of Request instances allocated from this chunk
"""
if not hasattr(self, "path"):
self.path = None
self.length = length
self.pool = length # free unit count
self.base = 0 # sum of growable requests' base
# sizes
self.requests = [] # list of Request instances
if isinstance(requests, list):
for req in requests:
self.addRequest(req)
self.skip_list = []
def __repr__(self):
s = ("%(type)s instance --\n"
"device = %(device)s length = %(length)d size = %(size)d\n"
"remaining = %(rem)d pool = %(pool)d" %
{"type": self.__class__.__name__, "device": self.path,
"length": self.length, "size": self.lengthToSize(self.length),
"pool": self.pool, "rem": self.remaining})
return s
def __str__(self):
s = "%d on %s" % (self.length, self.path)
return s
def addRequest(self, req):
""" Add a Request to this chunk. """
log.debug("adding request %d to chunk %s" % (req.device.id, self))
self.requests.append(req)
self.pool -= req.base
if not req.done:
self.base += req.base
def reclaim(self, request, amount):
""" Reclaim units from a request and return them to the pool. """
log.debug("reclaim: %s %d (%d MB)" % (request, amount, self.lengthToSize(amount)))
if request.growth < amount:
log.error("tried to reclaim %d from request with %d of growth"
% (amount, request.growth))
raise ValueError(_("cannot reclaim more than request has grown"))
request.growth -= amount
self.pool += amount
# put this request in the skip list so we don't try to grow it the
# next time we call growRequests to allocate the newly re-acquired pool
if request not in self.skip_list:
self.skip_list.append(request)
@property
def growth(self):
""" Sum of growth for all requests in this chunk. """
return sum(r.growth for r in self.requests)
@property
def hasGrowable(self):
""" True if this chunk contains at least one growable request. """
for req in self.requests:
if req.growable:
return True
return False
@property
def remaining(self):
""" Number of requests still being grown in this chunk. """
return len([d for d in self.requests if not d.done])
@property
def done(self):
""" True if we are finished growing all requests in this chunk. """
return self.remaining == 0
def maxGrowth(self, req):
return req.max_growth
def lengthToSize(self, length):
return length
def sizeToLength(self, size):
return size
def trimOverGrownRequest(self, req, base=None):
""" Enforce max growth and return extra units to the pool. """
max_growth = self.maxGrowth(req)
if max_growth and req.growth >= max_growth:
if req.growth > max_growth:
# we've grown beyond the maximum. put some back.
extra = req.growth - max_growth
log.debug("taking back %d (%dMB) from %d (%s)" %
(extra, self.lengthToSize(extra),
req.device.id, req.device.name))
self.pool += extra
req.growth = max_growth
# We're done growing this request, so it no longer
# factors into the growable base used to determine
# what fraction of the pool each request gets.
if base is not None:
base -= req.base
req.done = True
return base
def sortRequests(self):
pass
def growRequests(self, uniform=False):
""" Calculate growth amounts for requests in this chunk. """
log.debug("Chunk.growRequests: %r" % self)
self.sortRequests()
for req in self.requests:
log.debug("req: %r" % req)
# we use this to hold the base for the next loop through the
# chunk's requests since we want the base to be the same for
# all requests in any given growth iteration
new_base = self.base
last_pool = 0 # used to track changes to the pool across iterations
while not self.done and self.pool and last_pool != self.pool:
last_pool = self.pool # to keep from getting stuck
self.base = new_base
if uniform:
growth = last_pool / self.remaining
log.debug("%d requests and %d (%dMB) left in chunk" %
(self.remaining, self.pool, self.lengthToSize(self.pool)))
for p in self.requests:
if p.done or p in self.skip_list:
continue
if not uniform:
# Each request is allocated free units from the pool
# based on the relative _base_ sizes of the remaining
# growable requests.
share = p.base / float(self.base)
growth = int(share * last_pool) # truncate, don't round
p.growth += growth
self.pool -= growth
log.debug("adding %d (%dMB) to %d (%s)" %
(growth, self.lengthToSize(growth),
p.device.id, p.device.name))
new_base = self.trimOverGrownRequest(p, base=new_base)
log.debug("new grow amount for request %d (%s) is %d "
"units, or %dMB" %
(p.device.id, p.device.name, p.growth,
self.lengthToSize(p.growth)))
if self.pool:
# allocate any leftovers in pool to the first partition
# that can still grow
for p in self.requests:
if p.done:
continue
growth = self.pool
p.growth += growth
self.pool = 0
log.debug("adding %d (%dMB) to %d (%s)" %
(growth, self.lengthToSize(growth),
p.device.id, p.device.name))
self.trimOverGrownRequest(p)
log.debug("new grow amount for request %d (%s) is %d "
"units, or %dMB" %
(p.device.id, p.device.name, p.growth,
self.lengthToSize(p.growth)))
if self.pool == 0:
break
# requests that were skipped over this time through are back on the
# table next time
self.skip_list = []
class DiskChunk(Chunk):
""" A free region on disk from which partitions will be allocated """
def __init__(self, geometry, requests=None):
""" Create a Chunk instance.
Arguments:
geometry -- parted.Geometry instance describing the free space
Keyword Arguments:
requests -- list of Request instances allocated from this chunk
Note: We will limit partition growth based on disklabel
limitations for partition end sector, so a 10TB disk with an
msdos disklabel will be treated like a 2TB disk.
"""
self.geometry = geometry # parted.Geometry
self.sectorSize = self.geometry.device.sectorSize
self.path = self.geometry.device.path
super(DiskChunk, self).__init__(self.geometry.length, requests=requests)
def __repr__(self):
s = super(DiskChunk, self).__str__()
s += (" start = %(start)d end = %(end)d\n"
"sectorSize = %(sectorSize)d\n" %
{"start": self.geometry.start, "end": self.geometry.end,
"sectorSize": self.sectorSize})
return s
def __str__(self):
s = "%d (%d-%d) on %s" % (self.length, self.geometry.start,
self.geometry.end, self.path)
return s
def addRequest(self, req):
""" Add a Request to this chunk. """
if not isinstance(req, PartitionRequest):
raise ValueError(_("DiskChunk requests must be of type "
"PartitionRequest"))
if not self.requests:
# when adding the first request to the chunk, adjust the pool
# size to reflect any disklabel-specific limits on end sector
max_sector = req.device.partedPartition.disk.maxPartitionStartSector
chunk_end = min(max_sector, self.geometry.end)
if chunk_end <= self.geometry.start:
# this should clearly never be possible, but if the chunk's
# start sector is beyond the maximum allowed end sector, we
# cannot continue
log.error("chunk start sector is beyond disklabel maximum")
raise PartitioningError(_("partitions allocated outside "
"disklabel limits"))
new_pool = chunk_end - self.geometry.start + 1
if new_pool != self.pool:
log.debug("adjusting pool to %d based on disklabel limits"
% new_pool)
self.pool = new_pool
super(DiskChunk, self).addRequest(req)
def maxGrowth(self, req):
req_end = req.device.partedPartition.geometry.end
req_start = req.device.partedPartition.geometry.start
# Establish the current total number of sectors of growth for requests
# that lie before this one within this chunk. We add the total count
# to this request's end sector to obtain the end sector for this
# request, including growth of earlier requests but not including
# growth of this request. Maximum growth values are obtained using
# this end sector and various values for maximum end sector.
growth = 0
for request in self.requests:
if request.device.partedPartition.geometry.start < req_start:
growth += request.growth
req_end += growth
# obtain the set of possible maximum sectors-of-growth values for this
# request and use the smallest
limits = []
# disklabel-specific maximum sector
max_sector = req.device.partedPartition.disk.maxPartitionStartSector
limits.append(max_sector - req_end)
# 2TB limit on bootable partitions, regardless of disklabel
if req.device.req_bootable:
limits.append(sizeToSectors(2*1024*1024, self.sectorSize) - req_end)
# request-specific maximum (see Request.__init__, above, for details)
if req.max_growth:
limits.append(req.max_growth)
max_growth = min(limits)
return max_growth
def lengthToSize(self, length):
return sectorsToSize(length, self.sectorSize)
def sizeToLength(self, size):
return sizeToSectors(size, self.sectorSize)
def sortRequests(self):
# sort the partitions by start sector
self.requests.sort(key=lambda r: r.device.partedPartition.geometry.start)
class VGChunk(Chunk):
""" A free region in an LVM VG from which LVs will be allocated """
def __init__(self, vg, requests=None):
""" Create a VGChunk instance.
Arguments:
vg -- an LVMVolumeGroupDevice within which this chunk resides
Keyword Arguments:
requests -- list of Request instances allocated from this chunk
"""
self.vg = vg
self.path = vg.path
usable_extents = vg.extents - (vg.reservedSpace / vg.peSize)
super(VGChunk, self).__init__(usable_extents, requests=requests)
def addRequest(self, req):
""" Add a Request to this chunk. """
if not isinstance(req, LVRequest):
raise ValueError(_("VGChunk requests must be of type "
"LVRequest"))
super(VGChunk, self).addRequest(req)
def lengthToSize(self, length):
return length * self.vg.peSize
def sizeToLength(self, size):
return size / self.vg.peSize
def sortRequests(self):
# sort the partitions by start sector
self.requests.sort(key=lambda r: r.device, cmp=lvCompare)
def growRequests(self):
self.sortRequests()
# grow the percentage-based requests
last_pool = self.pool
for req in self.requests:
if req.done or not req.device.req_percent:
continue
growth = int(req.device.req_percent * 0.01 * self.length)# truncate
req.growth += growth
self.pool -= growth
log.debug("adding %d (%dMB) to %d (%s)" %
(growth, self.lengthToSize(growth),
req.device.id, req.device.name))
new_base = self.trimOverGrownRequest(req)
log.debug("new grow amount for request %d (%s) is %d "
"units, or %dMB" %
(req.device.id, req.device.name, req.growth,
self.lengthToSize(req.growth)))
# we're done with this request, so remove its base from the
# chunk's base
if not req.done:
self.base -= req.base
req.done = True
super(VGChunk, self).growRequests()
def getDiskChunks(disk, partitions, free):
""" Return a list of Chunk instances representing a disk.
Arguments:
disk -- a StorageDevice with a DiskLabel format
partitions -- list of PartitionDevice instances
free -- list of parted.Geometry instances representing free space
Partitions and free regions not on the specified disk are ignored.
"""
# list of all new partitions on this disk
disk_parts = [p for p in partitions if p.disk == disk and not p.exists]
disk_free = [f for f in free if f.device.path == disk.path]
chunks = [DiskChunk(f) for f in disk_free]
for p in disk_parts:
if p.isExtended:
# handle extended partitions specially since they are
# indeed very special
continue
for i, f in enumerate(disk_free):
if f.contains(p.partedPartition.geometry):
chunks[i].addRequest(PartitionRequest(p))
break
return chunks
class TotalSizeSet(object):
""" Set of device requests with a target combined size.
This will be handled by growing the requests until the desired combined
size has been achieved.
"""
def __init__(self, devices, size):
self.devices = []
for device in devices:
if isinstance(device, LUKSDevice):
partition = device.slave
else:
partition = device
self.devices.append(partition)
self.size = size
self.requests = []
self.allocated = sum([d.req_base_size for d in self.devices])
log.debug("set.allocated = %d" % self.allocated)
def allocate(self, amount):
log.debug("allocating %d to TotalSizeSet with %d/%d (%d needed)"
% (amount, self.allocated, self.size, self.needed))
self.allocated += amount
@property
def needed(self):
return self.size - self.allocated
def deallocate(self, amount):
log.debug("deallocating %d from TotalSizeSet with %d/%d (%d needed)"
% (amount, self.allocated, self.size, self.needed))
self.allocated -= amount
class SameSizeSet(object):
""" Set of device requests with a common target size. """
def __init__(self, devices, size, grow=False, max_size=None):
self.devices = []
for device in devices:
if isinstance(device, LUKSDevice):
partition = device.slave
else:
partition = device
self.devices.append(partition)
self.size = int(size / len(devices))
self.grow = grow
self.max_size = max_size
self.requests = []
def manageSizeSets(size_sets, chunks):
growth_by_request = {}
requests_by_device = {}
chunks_by_request = {}
for chunk in chunks:
for request in chunk.requests:
requests_by_device[request.device] = request
chunks_by_request[request] = chunk
growth_by_request[request] = 0
for i in range(2):
reclaimed = dict([(chunk, 0) for chunk in chunks])
for ss in size_sets:
if isinstance(ss, TotalSizeSet):
# TotalSizeSet members are trimmed to achieve the requested
# total size
log.debug("set: %s %d/%d" % ([d.name for d in ss.devices],
ss.allocated, ss.size))
for device in ss.devices:
request = requests_by_device[device]
chunk = chunks_by_request[request]
new_growth = request.growth - growth_by_request[request]
ss.allocate(chunk.lengthToSize(new_growth))
# decide how much to take back from each request
# We may assume that all requests have the same base size.
# We're shooting for a roughly equal distribution by trimming
# growth from the requests that have grown the most first.
requests = sorted([requests_by_device[d] for d in ss.devices],
key=lambda r: r.growth, reverse=True)
needed = ss.needed
for request in requests:
chunk = chunks_by_request[request]
log.debug("%s" % request)
log.debug("needed: %d" % ss.needed)
if ss.needed < 0:
# it would be good to take back some from each device
# instead of taking all from the last one(s)
extra = -chunk.sizeToLength(needed) / len(ss.devices)
if extra > request.growth and i == 0:
log.debug("not reclaiming from this request")
continue
else:
extra = min(extra, request.growth)
reclaimed[chunk] += extra
chunk.reclaim(request, extra)
ss.deallocate(chunk.lengthToSize(extra))
if ss.needed <= 0:
request.done = True
elif isinstance(ss, SameSizeSet):
# SameSizeSet members all have the same size as the smallest
# member
requests = [requests_by_device[d] for d in ss.devices]
_min_growth = min([r.growth for r in requests])
log.debug("set: %s %d" % ([d.name for d in ss.devices], ss.size))
log.debug("min growth is %d" % _min_growth)
for request in requests:
chunk = chunks_by_request[request]
_max_growth = chunk.sizeToLength(ss.size) - request.base
log.debug("max growth for %s is %d" % (request, _max_growth))
min_growth = max(min(_min_growth, _max_growth), 0)
if request.growth > min_growth:
extra = request.growth - min_growth
reclaimed[chunk] += extra
chunk.reclaim(request, extra)
request.done = True
elif request.growth == min_growth:
request.done = True
# store previous growth amounts so we know how much was allocated in
# the latest growRequests call
for request in growth_by_request.keys():
growth_by_request[request] = request.growth
for chunk in chunks:
if reclaimed[chunk] and not chunk.done:
chunk.growRequests()
def growPartitions(disks, partitions, free, size_sets=None):
""" Grow all growable partition requests.
Partitions have already been allocated from chunks of free space on
the disks. This function does not modify the ordering of partitions
or the free chunks from which they are allocated.
Free space within a given chunk is allocated to each growable
partition allocated from that chunk in an amount corresponding to
the ratio of that partition's base size to the sum of the base sizes
of all growable partitions allocated from the chunk.
Arguments:
disks -- a list of all usable disks (DiskDevice instances)
partitions -- a list of all partitions (PartitionDevice instances)
free -- a list of all free regions (parted.Geometry instances)
"""
log.debug("growPartitions: disks=%s, partitions=%s" %
([d.name for d in disks],
["%s(id %d)" % (p.name, p.id) for p in partitions]))
all_growable = [p for p in partitions if p.req_grow]
if not all_growable:
log.debug("no growable partitions")
return
if size_sets is None:
size_sets = []
log.debug("growable partitions are %s" % [p.name for p in all_growable])
#
# collect info about each disk and the requests it contains
#
chunks = []
for disk in disks:
sector_size = disk.format.partedDevice.sectorSize
# list of free space regions on this disk prior to partition allocation
disk_free = [f for f in free if f.device.path == disk.path]
if not disk_free:
log.debug("no free space on %s" % disk.name)
continue
disk_chunks = getDiskChunks(disk, partitions, disk_free)
log.debug("disk %s has %d chunks" % (disk.name, len(disk_chunks)))
chunks.extend(disk_chunks)
#
# grow the partitions in each chunk as a group
#
for chunk in chunks:
if not chunk.hasGrowable:
# no growable partitions in this chunk
continue
chunk.growRequests()
# adjust set members' growth amounts as needed
manageSizeSets(size_sets, chunks)
for disk in disks:
log.debug("growing partitions on %s" % disk.name)
for chunk in chunks:
if chunk.path != disk.path:
continue
if not chunk.hasGrowable:
# no growable partitions in this chunk
continue
# recalculate partition geometries
disklabel = disk.format
start = chunk.geometry.start
# find any extended partition on this disk
extended_geometry = getattr(disklabel.extendedPartition,
"geometry",
None) # parted.Geometry
# align start sector as needed
if not disklabel.alignment.isAligned(chunk.geometry, start):
start = disklabel.alignment.alignUp(chunk.geometry, start)
new_partitions = []
for p in chunk.requests:
ptype = p.device.partedPartition.type
log.debug("partition %s (%d): %s" % (p.device.name,
p.device.id, ptype))
if ptype == parted.PARTITION_EXTENDED:
continue
# XXX since we need one metadata sector before each
# logical partition we burn one logical block to
# safely align the start of each logical partition
if ptype == parted.PARTITION_LOGICAL:
start += disklabel.alignment.grainSize
old_geometry = p.device.partedPartition.geometry
new_length = p.base + p.growth
end = start + new_length - 1
# align end sector as needed
if not disklabel.endAlignment.isAligned(chunk.geometry, end):
end = disklabel.endAlignment.alignDown(chunk.geometry, end)
new_geometry = parted.Geometry(device=disklabel.partedDevice,
start=start,
end=end)
log.debug("new geometry for %s: %s" % (p.device.name,
new_geometry))
start = end + 1
new_partition = parted.Partition(disk=disklabel.partedDisk,
type=ptype,
geometry=new_geometry)
new_partitions.append((new_partition, p.device))
# remove all new partitions from this chunk
removeNewPartitions([disk], [r.device for r in chunk.requests])
log.debug("back from removeNewPartitions")
# adjust the extended partition as needed
# we will ony resize an extended partition that we created
log.debug("extended: %s" % extended_geometry)
if extended_geometry and \
chunk.geometry.contains(extended_geometry):
log.debug("setting up new geometry for extended on %s" % disk.name)
ext_start = 0
for (partition, device) in new_partitions:
if partition.type != parted.PARTITION_LOGICAL:
continue
if not ext_start or partition.geometry.start < ext_start:
# account for the logical block difference in start
# sector for the extended -v- first logical
# (partition.geometry.start is already aligned)
ext_start = partition.geometry.start - disklabel.alignment.grainSize
new_geometry = parted.Geometry(device=disklabel.partedDevice,
start=ext_start,
end=chunk.geometry.end)
log.debug("new geometry for extended: %s" % new_geometry)
new_extended = parted.Partition(disk=disklabel.partedDisk,
type=parted.PARTITION_EXTENDED,
geometry=new_geometry)
ptypes = [p.type for (p, d) in new_partitions]
for pt_idx, ptype in enumerate(ptypes):
if ptype == parted.PARTITION_LOGICAL:
new_partitions.insert(pt_idx, (new_extended, None))
break
# add the partitions with their new geometries to the disk
for (partition, device) in new_partitions:
if device:
name = device.name
else:
# If there was no extended partition on this disk when
# doPartitioning was called we won't have a
# PartitionDevice instance for it.
name = partition.getDeviceNodeName()
log.debug("setting %s new geometry: %s" % (name,
partition.geometry))
constraint = parted.Constraint(exactGeom=partition.geometry)
disklabel.partedDisk.addPartition(partition=partition,
constraint=constraint)
path = partition.path
if device:
# set the device's name
device.partedPartition = partition
# without this, the path attr will be a basename. eek.
device.disk = disk
# make sure we store the disk's version of the partition
newpart = disklabel.partedDisk.getPartitionByPath(path)
device.partedPartition = newpart
def lvCompare(lv1, lv2):
""" More specifically defined lvs come first.
< 1 => x < y
0 => x == y
> 1 => x > y
"""
ret = 0
# larger requests go to the front of the list
ret -= cmp(lv1.size, lv2.size) * 100
# fixed size requests to the front
ret += cmp(lv1.req_grow, lv2.req_grow) * 50
# potentially larger growable requests go to the front
if lv1.req_grow and lv2.req_grow:
if not lv1.req_max_size and lv2.req_max_size:
ret -= 25
elif lv1.req_max_size and not lv2.req_max_size:
ret += 25
else:
ret -= cmp(lv1.req_max_size, lv2.req_max_size) * 25
if ret > 0:
ret = 1
elif ret < 0:
ret = -1
return ret
def growLVM(storage):
""" Grow LVs according to the sizes of the PVs. """
for vg in storage.vgs:
total_free = vg.freeSpace
if total_free < 0:
# by now we have allocated the PVs so if there isn't enough
# space in the VG we have a real problem
raise PartitioningError(_("not enough space for LVM requests"))
elif not total_free:
log.debug("vg %s has no free space" % vg.name)
continue
log.debug("vg %s: %dMB free ; lvs: %s" % (vg.name, total_free,
[l.lvname for l in vg.lvs]))
chunk = VGChunk(vg, requests=[LVRequest(l) for l in vg.lvs])
chunk.growRequests()
# now grow the lvs by the amounts we've calculated above
for req in chunk.requests:
if not req.device.req_grow:
continue
# Base is in pe, which means potentially rounded up by as much as
# pesize-1. As a result, you can't just add the growth to the
# initial size.
req.device.size = chunk.lengthToSize(req.base + req.growth)